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Nonsmooth Optimization on Riemannian Manifolds

We are looking for numerical algorithms to find

argmin
p∈M

f(p)

where
▶ M is a Riemannian manifold
▶ f :M→ R is a function

f might be nonsmooth and/or nonconvex
M might be high-dimensional
f has some “nice structure”
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The Fenchel Conjugate
The Fenchel conjugate of a function f : Rn → R is given by

f ∗(ξ) := sup
x∈Rn
〈ξ, x〉 − f(x) = sup

x∈Rn

(
ξ
−1

)T( x
f(x)

)

▶ given ξ ∈ Rn: maximize the distance between ξT· and f
▶ can also be written in the epigraph

The Fenchel biconjugate reads

f ∗ ∗(x) = (f ∗) ∗(x) = sup
ξ∈Rn
〈ξ , x〉 − f ∗(ξ).
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Illustration of the Fenchel Conjugate
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Applications of the Fenchel conjugate
The Fenchel conjugate is at the core of nonsmooth optimization

argmin
x∈Rn

f(x) + g(Kx)

as a so-called splitting method
▶ primal-dual (PD) algorithms [Esser, Zhang, Chan, 2010; Chambolle, Pock, 2011]

▶ PD with non-linear operators K [Valkonen, 2014; Mom, Langer, Sixou, 2022]

▶ several variants: hybrid gradient, primal/dual relaxed, linearized,…
▶ To derive the Difference of Convex algorithm (g concave)

Recently this has been generalised Riemannian manifolds using
▶ a tangent space approach [RB, Herzog, Silva Louzeiro, Tenbrinck, Vidal-Núñez, 2021]

▶ a tangent bundle approach [Silva Louzeiro, RB, Herzog, 2022]

▶ Busemann functions [de Carvalho Bento, Neto, Melo, 2023]

Formulate a framework for Fenchel conjugates on nonlinear spaces.
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Nonlinear Fenchel conjugates
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The Nonlinear Fenchel Conjugate
[Schiela, Herzog, RB, 2024]

In the Fenchel conjugate we use linear test functions φ(x) = 〈ξ, x〉.
Use arbitrary test functions

Let M be a set. We define the domain of the sum (difference) of two
extended real-valued functions f, g ∈ P±∞(M) as

D(f± g) := {x ∈M| f(x)± g(x) is defined}.

Definition
The nonlinear Fenchel conjugate of f ∈ P±∞(M) is defined as

f⊛ : P±∞(M)→ R±∞

φ 7→ f⊛(φ) := sup{φ(x)− f(x) | x ∈ D(φ− f)}.
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A few properties
The following properties carry over to the nonlinear case,
just being a bit careful with the domain of the test functions.
Suppose that M is a set and f, g ∈ P±∞(M). [Schiela, Herzog, RB, 2024]

1. For α > 0 and β ∈ R,
αf⊛(φ) + β = (αf)⊛(αφ+ β) = (αf− β)⊛(αφ).

2. If D(f− ψ) = D(φ+ ψ) =M, then
(f− ψ)⊛(φ) = f⊛(φ+ ψ).

3. If D(f+ g) = D(φ+ ψ) =M and f⊛(φ) + g⊛(ψ) is defined, then
(f+ g)⊛(φ+ ψ) ⩽ f⊛(φ) + g⊛(ψ).

4. φ ⩾ ψ and f ⩽ g implies f⊛(φ) ⩾ g⊛(ψ).
5. f⊛ is convex on P∞(M).
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The Fenchel-Young inequality
An important inequality in the classical case is the Fenchel-Young
inequality

f(x) + f ∗(ξ) ≥ 〈ξ, x〉

This carries over to the nonlinear case, with a bit of carefulness as to
when the sum is defined.
Theorem (Fenchel-Young inequality)
Suppose that f, φ ∈ P±∞(M) and x ∈M.
The Fenchel-Young inequalities
▶ f⊛(φ) ⩾ φ(x)− f(x)
▶ f(x) ⩾ φ(x)− f⊛(φ)
▶ φ(x) ⩽ f(x) + f⊛(φ)

hold, provided that the respective right-hand side is defined in R±∞.
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Nonlinear dual map
Motivation. In the classical case, we often need the adjoint K∗ of K.
Definition
SupposeM and N are two non-empty sets and A :M→N is some map.
The map

A⋆ : P±∞(N )→ P±∞(M)

ψ 7→ A⋆(ψ) := ψ ◦ A

is called the dual or adjoint map of A, or the pullback by A.

▶ A⋆(αψ1 + ψ2) = α A⋆(ψ1) + A⋆(ψ2) is a homomorphism
▶ If A is bijective, then (f ◦ A−1)⊛ = f⊛ ◦ A⋆

▶ more generally: defining (f • A−1)(y) := inf
x∈A−1(y)

f(x),

we obtain (f • A−1)⊛ = f⊛ ◦ A⋆.
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Motivation: The biconjugate
▶ approximate f its maximal convex, lsc. minorant
▶ linear setting: Γ-regularization, the pointwise suppremum of

continuous affine functions. [Ch. I.3 Ekeland, Temam, 1999]

⇒ f∗∗ ∈ P±∞(V) coincides with Γ-regularization of f, i. e.
the largest convex lsc. minorant of f ∈ P±∞(V)

▶ Fenchel-Moreau: [Thm. 13.32 Bauschke, Combettes, 2011]

f ∈ P∞(V) is convex, lsc. ⇔ f∗∗ = f.

Nonlinear case.
Find a suitable subset F ⊂ P±∞(M)
as a generalization for affine functions.

Can we state a biconjugation theorem as well?
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F-regularization
[Schiela, Herzog, RB, 2024]

Suppose that ∅ 6= F ⊆ P±∞(M) and denote by

F̃ := {φ+ c |φ ∈ F , c ∈ R}

the set of all φ that result from a shift of elements of F .

We define the F -regularization of f ∈ P±∞(M) as

b fcF(x) := sup
{
φ(x)

∣∣φ ∈ F̃ , φ ⩽ f
}
.

b fcF is the pointwise supremum of all minorants of f taken from F and
its constant shifts.

In short we write: b fcF = sup
{
φ
∣∣φ ∈ F̃ , φ ⩽ f

}
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Some properties of F-regularization
[Schiela, Herzog, RB, 2024]

1. f ⩽ g and F ⊆ G implies bfcF ⩽ bgcG.
2. For φ ∈ F and c ∈ R we have bf+ φ+ ccF = bfcF + φ+ c.
3. bfcF ⩽ f, thus f ⩽ bfcF ⇔ bfcF = f
4. f ∈ F ⇒ bfcF = f.
5. F ⊆ G implies bbfcGcF = bfcF .
6. if F is a convex cone we obtain for α1, α2 > 0 and f1, f2 ∈ P±∞(M)

with bf1cF 6≡ −∞ and bf2cF 6≡ −∞ we obtain

α1bf1cF + α2bf2cF ⩽ bα1f1 + α2f2cF ⩽ α1f1 + α2f2
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Examples
1. If M is a locally convex linear topological space

▶ F =M∗ is its topological dual space
▶ F̃ is the space of all continuous affine functions
▶ bfcM∗ is the pointwise supremum over all affine minorants of f.

2. Suppose that M is a metric space.
▶ Then lower semi-continuous functions f ∈ P∞(M) can be written as

the pointwise supremum of continuous functions
▶ For F = C(M) the set sup-cl(F) :=

{
bfcF

∣∣ f ∈ P±∞(M)
}

consists
of the cone of lower semi-continuous functions in P∞(M)

3. alternative generalization: the c-conjugate [Martínez-Legaz, 2005]

For a coupling function c :M×N → R±∞ defined as

fc(y) := sup
x∈M

c(x, y)− f(x) for y ∈ N .

This generalizes duality pairing instead of the set of test functions.
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F-biconjugates [Schiela, Herzog, RB, 2024]

▶ We denote the restriction of the conjugate f⊛ ∈ P±∞(M) to F by
f⊛|F : F → R±∞

▶ Let the evaluation (Dirac) functions be given by
δx : P±∞(M)→ R±∞, φ 7→ δx(φ) := φ(x).

δx|F , F ⊂ P±∞(M) linear, is a linear function and continuous.
Definition
Suppose that F is a linear subspace of P(M).
We define the F -biconjugate f⊛⊛

F of f ∈ P±∞(M) as

f⊛⊛
F :M→ R±∞, x 7→ (f⊛|F)⊛(δx).

Note. We employ the embedding of M into the dual space of F via
JM→F ′ :M→ F ′, x 7→ δx.
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F-biconjugate theorem

Remember.
For the classical Fenchel biconjugate the set F are all affine functions
and b fcF is largest convex lsc. minorant of f ∈ P±∞(V)

Theorem [Schiela, Herzog, RB, 2024]
Suppose that F is a linear subspace of P(M). Thn,
the F -biconjugate satisfies f⊛⊛

F = bfcF for all f ∈ P±∞(M).

If f = bfcF , or in other words f agrees with the pointwise supremum of
all minorants from F , then we recover f from its F -biconjugate.
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Motivation: The subdifferential
With the Fenchel conjugate f∗ : V∗ → R±∞ of a proper, convex, lsc.
function f : V→ R±∞ on a vector space V we have

ξ ∈ ∂f(x) if and only if x ∈ ∂f∗(ξ)

we can characterize both subdifferentials.

Nonlinear case.
We need “more structure on M” to define a subdifferential of f.

In practice/numerics we use Riemannian manifolds.
In the following we consider a manifold M, that is locally homeomorphic
to a Banach space X , or a Banach manifold for short.
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The viscosity Fréchet Subdifferential
A function f ∈ P±∞(M) is lower semi-continuous at x ∈M if,
∀ε > 0 ∃ a neighbourhood U of x s.t. that f(y) ⩾ f(x)− ε for all y ∈ U .
We denote by lsc∞(M) the set of all functions that are lower
semi-continuous at every x ∈M.
Definition
Suppose that M is a C1-Banach manifold, f ∈ lsc∞(M), x ∈M and
f(x) 6= +∞.
The (viscosity) Fréchet subdifferential ∂Ff(x) of f is defined as follows:

∂Ff(x) :=
{
φ′(x)

∣∣φ ∈ C1(M), f−φ attains a local minimum at x
}
⊆ T ∗

xM,

where T ∗
xM := (TxM)∗ denotes the cotangent space at x.

In case f(x) = +∞, we set ∂Ff(x) := ∅.
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Subdifferential Classification

Theorem [Schiela, Herzog, RB, 2024]
Suppose that M is a C1-Banach manifold.
Let x ∈M, f be lower semicontinuous at every x ∈M and φ ∈ C1(M).

1. If f⊛(φ) = φ(x)− f(x), i. e. we have equality in the Fenchel-Young
inequality,
then φ′(x) ∈ ∂Ff(x) and the Dirac function δx ∈ ∂(f⊛|C1(M))(φ).

2. Conversely, if δx ∈ ∂(f⊛|C1(M))(φ), then f⊛(φ) = φ(x)− f(x).
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Motivation: Infimal convolution
Infimal convolution on a vector space M = V is defined as

(f ⋆inf g)(x) := inf
y∈M
{f(y) + g(x− y)} .

The infimal convolution formula shows that [Prop. 13.21 Bauschke, Combettes, 2011]

(f ⋆inf g)∗ = f∗ + g∗

Nonlinear case.
We need even “slightly more structure” to generalise infimal convolution,
a way to define “x− y ∈M” to be precise.

Can we then get the same result for the nonlinear Fenchel conjugate?
And what is a suitable restriction of P±∞(M) then?
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Using Lie groups
Let
▶ M be a Riemannian manifold
▶ · :M×M→M be a smooth group operation

(M, ·) is a Lie group.

We generalize infimal convolution to functions f, g ∈ P∞(M) as [Bachir, 2015]

(f ⋆inf g)(x) := inf
y∈M

f(x · y−1) + g(y) = inf
z∈M

f(z) + g(z−1 · x).

Consider the linear space of group homomorphisms

H := Hom((M, ·), (R,+))

Then we get the relation [Schiela, Herzog, RB, 2024]

(f ⋆inf g)⊛(φ) = f⊛(φ) + g⊛(φ) for all φ ∈ H.
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The Riemannian Difference of
Convex Algorithm
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A Riemannian Manifold M
Notation.
▶ Logarithmic map logp q = γ̇(0;p,q)
▶ Exponential map expp X = γp,X(1)
▶ Geodesic γ(·;p , q)
▶ Tangent space TpM
▶ inner product (· , ·)p

Numerics.
expp and logp maybe not available
efficiently/ in closed form
⇒ use a retraction and its inverse instead.

γ(·;p , q)p q

expp
logp

X

logp p

TpM

M
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(Geodesic) Convexity

[Sakai, 1996; Udrişte, 1994]

A set C ⊂M is called (strongly geodesically) convex
if for all p,q ∈ C the geodesic γ(·;p , q) is unique and lies in C.

A function f : C → R is called (geodesically) convex
if for all p,q ∈ C the composition f(γ(t;p , q)), t ∈ [0,1], is convex.
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The Riemannian Subdifferential

Let C be a convex set.
The subdifferential of f at p ∈ C is given by [Ferreira, Oliveira, 2002; Lee, 2003; Udrişte, 1994]

∂Mf(p) :=
{
ξ ∈ T ∗

pM
∣∣ f(q) ≥ f(p) + 〈ξ , logp q〉p for q ∈ C

}
,

where
▶ T ∗

pM is the dual space of TpM, also called cotangent space
▶ 〈· , ·〉p denotes the duality pairing on T ∗

pM×TpM
▶ numerically we use musical isomorphisms X = ξ♭ ∈ TpM to obtain a

subset of TpM
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Difference of Convex

We aim to solve
argmin
p∈M

f(p)

where
▶ M is a Riemannian manifold
▶ f :M→ R is a difference of convex function, i. e. of the form

f(p) = g(p)− h(p)

▶ g,h :M→ R are convex, lower semicontinuous, and proper
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The Euclidean DCA
Idea 1. At x(k), approximate h(x) by its affine minorization

hk(x) := h(x(k)) + 〈x− x(k), y(k)〉 for some y(k) ∈ ∂h(xk)

⇒ iteratively minimize g(x)− hk(x) = g(x)− h(x(k))− 〈x− x(k), y(k)〉

Idea 2. Using duality theory finding a new y(k) ∈ ∂h(x(k)) is equivalent to

y(k) ∈ argmin
y∈Rn

{
h∗(y)− g∗(y(k−1))− 〈y− y(k−1), x(k)〉

}
Idea 3. Reformulate 2 using a proximal map ⇒ DCPPA

on manifolds this was done in [Almeida, Neto, Oliveira, Souza, 2020; Souza, Oliveira, 2015]

In the Euclidean case, all three models are equivalent.
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A Fenchel Duality on a Hadamard Manifold
Let
▶ TM =

⋃̇
p
TpM denote the tangent bundle

▶ analogously T∗M denotes the cotangent bundle
▶ M be a Hadamard manifold (non-positive sectional curvature).

Definition [Silva Louzeiro, RB, Herzog, 2022]

Let f :M→ R.
The Fenchel conjugate of f is the function f ∗ : T ∗M→ R defined by

f ∗(p, ξ) := sup
q∈M

{
〈ξ, logp q〉 − f(q)

}
, (p, ξ) ∈ T ∗M.
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The Dual Difference of Convex Problem
Given the Difference of Convex problem

argmin
p∈M

g(p)− h(p)

and the Fenchel duals g∗ and h∗,
we can state the dual difference of convex problem as

[RB, Ferreira, Santos, Souza, 2024]

argmin
(p,ξ)∈T∗M

h∗(p, ξ)− g∗(p, ξ).

On M = Rn this indeed simplifies to the classical dual problem.

Theorem. [RB, Ferreira, Santos, Souza, 2024]

inf
(q,X)∈T ∗M

{
h∗(q, X)− g∗(q, X)

}
= inf

p∈M
{g(p)− h(p)} .



28

The Dual Difference of Convex Problem

The primal and dual Difference of Convex problem

argmin
p∈M

g(p)− h(p) and argmin
(p,ξ)∈T∗M

h∗(p, ξ)− g∗(p, ξ)

are equivalent in the following sense.

Theorem. [RB, Ferreira, Santos, Souza, 2024]

If p∗ is a solution of the primal problem, then (p∗, ξ∗) ∈ T∗M is a solution
for the dual problem for all ξ∗ ∈ ∂Mh(p∗) ∩ ∂Mg(p∗).
If (p∗, ξ∗) ∈ T∗M is a solution of the dual problem for some
ξ∗ ∈ ∂Mh(p∗) ∩ ∂Mg(p∗), then p∗ is a solution of the primal problem.
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Derivation of the Riemannian DCA
We consider the first order Taylor approximation of h at some point p(k):
With ξ ∈ ∂h(p(k)) we set

hk(p) := h(p(k)) + 〈ξ , logp(k) p〉p(k)

Using musical isomorphisms we identify X = ξ♯ ∈ TpM,
where we call X a subgradient. Locally hk minorizes h, i. e.

hk(q) ≤ h(q) locally around p(k)

⇒ Use −hk(p) as upper bound for −h(p) in f = g− h.

Note. On Rn the function hk is linear.
On a manifold hk is nonlinear and not even necessarily convex,

even on a Hadamard manifold.
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The Riemannian DC Algorithm
[RB, Ferreira, Santos, Souza, 2024]

Input: An initial point p(0) ∈ dom(g), g and ∂Mh
1: Set k = 0.
2: while not converged do
3: Take X(k) ∈ ∂Mh(p(k))
4: Compute the next iterate p(k+1) as

p(k+1) ∈ argmin
p∈M

g(p)−
(
X(k), logp(k) p

)
p(k) . (∗)

5: Set k← k+ 1
6: end while

Note. In general the subproblem (∗) can not be solved in closed form.
But an approximate solution yields a good candidate.
For example: Given g, p(k), and X(k) and grad g ⇒ Gradient descent.



31

Convergence of the Riemannian DCA
Let {p(k)}k∈N and {X(k)}k∈N be the iterates and subgradients of the RDCA.
Theorem. [RB, Ferreira, Santos, Souza, 2024]

If p̄ is a cluster point of {p(k)}k∈N, then p̄ ∈ dom(g) and there exists a
cluster point X̄ of {X(k)}k∈N s. t. X̄ ∈ ∂g(p̄) ∩ ∂h(p̄).
⇒ Every cluster point of {p(k)}k∈N, if any, is a critical point of f.

Proposition. [RB, Ferreira, Santos, Souza, 2024]

Let g be σ-strongly (geodesically) convex. Then

f(p(k+1)) ≤ f(p(k))− σ

2
d2(p(k),p(k+1))

and
∞∑
k=0

d2(p(k),p(k+1)) <∞, so in particular lim
k→∞

d(p(k),p(k+1)) = 0.
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A Numerical Example



32

The Difference of Convex Algorithm in Manopt.jl

The algorithm is implemented and released in Julia using Manopt.jl1.
It can be used with any manifold from Manifolds.jl

A solver call looks like
q = difference_of_convex_algorithm(M, f, g, ∂h, p0)

where one has to implement f(M, p), g(M, p), and ∂h(M, p).

▶ a sub problem is generated if keyword grad_g= is set
▶ an efficient version of its cost and gradient is provided
▶ you can specify the sub-solver using sub_state=

to also set up the specific parameters of your favourite algorithm

1see https://manoptjl.org/stable/solvers/difference of convex/

https://manoptjl.org/stable/solvers/difference_of_convex/
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Rosenbrock and First Order Methods
Problem. We consider the classical Rosenbrock example2

argmin
x∈R2

a
(
x21 − x2

)2
+
(
x1 − b

)2
,

where a,b > 0, usually b = 1 and a� b, here: a = 2 · 105.

Known Minimizer x∗ =
(
b
b2
)

with cost f(x∗) = 0.

Goal. Compare first-order methods, e. g. using the (Euclidean) gradient

∇f(x) =
(

4a(x21 − x2)
−2a(x21 − x2)

)
+

(
2(x1 − b)

0

)

2available online in ManoptExamples.jl

https://juliamanifolds.github.io/ManoptExamples.jl/stable/examples/Difference-of-Convex-Rosenbrock/
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A “Rosenbrock-Metric” on R2

In our Riemannian framework, we can introduce a new metric on R2 as

Gp :=

(
1+ 4p21 −2p1
−2p1 1

)
, with inverse G−1

p =

(
1 2p1
2p1 1+ 4p21

)
.

We obtain (X, Y)p = XTGpY

The exponential and logarithmic map are given as

expp(X) =
(

p1 + X1
p2 + X2 + X21

)
, logp(q) =

(
q1 − p1

q2 − p2 − (q1 − p1)2
)
.

Manifolds.jl:
Implement these functions on MetricManifold(R^2, RosenbrockMetric()).
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The Riemannian Gradient w.r.t. the new Metric

Let f :M→ R. Given the Euclidean gradient ∇f(p), its Riemannian
gradient grad f :M→ TM is given by

grad f(p) = G−1
p ∇f(p).

While we could implement this denoting ∇f(p) =
(
f ′1(p) f ′2(p)

)T using〈
grad f(q), logq p

〉
q
= (p1 − q1)f

′

1(q) + (p2 − q2 − (p1 − q1)2)f
′

2(q),

but it is automatically done in Manopt.jl.
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The Experiment Setup
Algorithms. We now compare

1. The Euclidean gradient descent algorithm on R2,
2. The Riemannian gradient descent algorithm on M,
3. The Difference of Convex Algorithm on R2,
4. The Difference of Convex Algorithm on M.

For DCA third we split f into f(x) = g(x)− h(x) with

g(x) = a
(
x21 − x2

)2
+ 2

(
x1 − b

)2 and h(x) =
(
x1 − b

)2
.

Initial point. p0 = 1
10

(
1
2

)
with cost f(p0) ≈ 7220.81.

Stopping Criterion.
dM(p(k),p(k−1)) < 10−16 or ‖grad f(p(k))‖p < 10−16.
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Results

100 101 102 103 104 105 106 107
10−16

10−10

10−4

102

Iter. k

f(p(k))
Euclidean GD Euclidan DCA

Riemannian GD Riemannian DCA

Algorithm Runtime (sec.) # Iterations
Euclidean GD 305.567 53 073 227
Euclidean DCA 58.268 50 588
Riemannian GD 18.894 2 454 017
Riemannian DCA 7.704 2 459
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Summary
Nonlinear Fenchel Conjugate generalises the Fenchel conjugate.
A lot of properties can be proven more generally as well:
▶ Fenchel-Young inequality
▶ Biconjugate theorem
▶ Subdifferential classification on manifolds
▶ Infimal convolution on Lie groups

The Difference of Convex Algorithm to solve a nonsmooth, nonconvex
problems on manifold of the form

argmin
p∈M

g(p)− h(p)

Relation to Fenchel Duality on Hadamard manifolds
Convergence on Hadamard manifolds

▶ available in Manopt.jl for all manifolds form Manifolds.jl
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Manopt.jl
Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s,
implement initialize_solver!(p, s) and step_solver!(p, s, i)
⇒ an algorithm in the Manopt.jl interface

Highlevel interfaces like gradient_descent(M, f, grad_f)
on any manifold M from Manifolds.jl.
All provide debug output, recording, cache & counting capabilities,
as well as a library of step sizes and stopping criteria.

Manopt family.
manoptjl.org

[RB, 2022]
manopt.org

[Boumal, Mishra, Absil, Sepulchre, 2014]
pymanopt.org
[Townsend, Koep, Weichwald, 2016]

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org
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List of Algorithms in Manopt.jl
Derivatve-Free Nelder-Mead, Particle Swarm, CMA-ES, LTMADS
Subgradient-based Subgradient Method, Convex Bundle Method,

Proximal Bundle Method
Gradient-based Gradient Descent, Conjugate Gradient, Stochastic,

Momentum, Nesterov, Averaged; Quasi-Newton with
(L-)BFGS, DFP, Broyden, SR1,...; Levenberg-Marquard

Hessian-based Trust Regions, Adaptive Regularized Cubics (ARC)
nonsmooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point
constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe,

Interior Point Newton
nonconvex Difference of Convex Algorithm, DCPPA

manoptjl.org/stable/solvers/

https://www.manoptjl.org/stable/solvers/
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