

Nonsmooth Optimization on Riemannian Manifolds

Ronny Bergmann

NTNU, Trondheim, Norway.

Seminar of the Faculty of Applied Mathematics

AGH University of Krakow, Kraków. Poland. December 4, 2025.

Nonsmooth Optimization on Riemannian Manifolds

We are looking for numerical algorithms to find

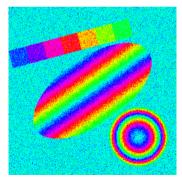
$$\underset{p \in \mathcal{M}}{\operatorname{arg\,min}} f(p)$$

where

- $ightharpoonup \mathcal{M}$ is a Riemannian manifold
- ▶ $f: \mathcal{M} \to \overline{\mathbb{R}}$ is a function
- $\triangle f$ might be nonsmooth and/or nonconvex
- Λ might be high-dimensional
- f has some "nice structure"

- variational models for denoising, inpainting, deconvolution, segmentation, ...
- ▶ applications in medical imaging, computer vision
- 🛕 nonlinear (non-Euclidean) data

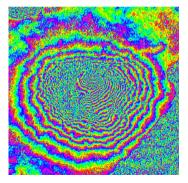
- ▶ phase-valued data (S¹)
- ightharpoonup wind-fields, GPS (\mathbb{S}^2)
- **▶** DT-MRI (*P*(3))
- \triangleright EBSD, (grain) orientations (SO(n))



Artificial noisy phase-valued data.

- variational models for denoising, inpainting, deconvolution, segmentation, ...
- ▶ applications in medical imaging, computer vision
- nonlinear (non-Euclidean) data

- ▶ phase-valued data (S¹)
- ightharpoonup wind-fields, GPS (\mathbb{S}^2)
- **▶** DT-MRI (*P*(3))
- \triangleright EBSD, (grain) orientations (SO(n))



InSAR-Data of Mt. Vesuvius.

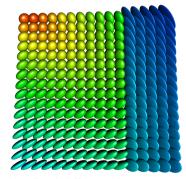
- variational models for denoising, inpainting, deconvolution, segmentation, ...
- ▶ applications in medical imaging, computer vision
- 📤 nonlinear (non-Euclidean) data

- ightharpoonup phase-valued data (\mathbb{S}^1)
- ▶ wind-fields, GPS (S²)
- **▶** DT-MRI (*P*(3))
- \triangleright EBSD, (grain) orientations (SO(n))

Artificial noisy data on the sphere \mathbb{S}^2 .

- variational models for denoising, inpainting, deconvolution, segmentation, ...
- ▶ applications in medical imaging, computer vision
- 🛕 nonlinear (non-Euclidean) data

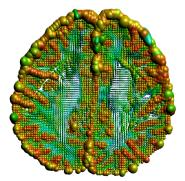
- ▶ phase-valued data (S¹)
- ▶ wind-fields, GPS (S²)
- **▶** DT-MRI (*P*(3))
- \triangleright EBSD, (grain) orientations (SO(n))



Artificial diffusion data, each pixel is a sym. pos. def. matrix.

- variational models for denoising, inpainting, deconvolution, segmentation, ...
- ▶ applications in medical imaging, computer vision
- nonlinear (non-Euclidean) data

- ightharpoonup phase-valued data (\mathbb{S}^1)
- ▶ wind-fields, GPS (S²)
- **▶** DT-MRI (*P*(3))
- \triangleright EBSD, (grain) orientations (SO(n))



DT-MRI of the human brain.

- variational models for denoising, inpainting, deconvolution, segmentation, ...
- ▶ applications in medical imaging, computer vision
- 📤 nonlinear (non-Euclidean) data

- ▶ phase-valued data (S¹)
- ▶ wind-fields, GPS (S²)
- **▶** DT-MRI (*P*(3))
- \triangleright EBSD, (grain) orientations (SO(n))

Constraints and/or geometry

constraints

- needs an embedding
- might not always yield a manifold
- slightly more flexible
- algorithms have to deal with constraints
- results might be infeasible

geometry

- might work agnostic of an embedding
- quotient manifolds
- we can use any uncinstrained algorithm...
- ...after adapting it to the manifold setting
- algorithms stay on the manifold
 always feasible

We can also consider a combination of both: constrained optimization on manifolds.

A Riemannian Manifold ${\mathcal M}$

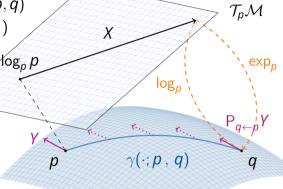
Notation.

- lacksquare Logarithmic map $\log_{
 ho}q=\dot{\gamma}(0;
 ho,q)$
- Exponential map $\exp_p X = \gamma_{p,X}(1)$
- Geodesic $\gamma(\cdot; p, q)$
- ► Tangent space $\mathcal{T}_p\mathcal{M}$
- ▶ inner product $(\cdot, \cdot)_p$
- ▶ parallel transport $PT_{p \leftarrow q}(X)$
- ightharpoonup distance function d(p,q)

Numerics.

 \exp_p and \log_p maybe not available efficiently/ in closed form

⇒ use a retraction and its inverse instead.



 \mathcal{M}

(Geodesic) Convexity

[Sakai, 1996; Udriște, 1994]

A set $\mathcal{C} \subset \mathcal{M}$ is called (strongly geodesically) convex if for all $p, q \in \mathcal{C}$ the geodesic $\gamma(\cdot; p, q)$ is unique and lies in \mathcal{C} .

A function $f: \mathcal{C} \to \overline{\mathbb{R}}$ is called (geodesically) convex if for all $p, q \in \mathcal{C}$ the composition $f(\gamma(t; p, q)), t \in [0, 1]$, is convex.

The Riemannian Subdifferential

Let \mathcal{C} be a convex set.

The subdifferential of f at $p \in \mathcal{C}$ is given by [Ferreira, Oliveira, 2002; Lee, 2003; Udrişte, 1994]

$$\partial_{\mathcal{M}} f(p) := ig\{ \xi \in \mathcal{T}_p^* \mathcal{M} \, ig| f(q) \geq f(p) + \langle \xi \, , \log_p q
angle_p \; ext{ for } q \in \mathcal{C} ig\},$$

where

- $ightharpoonup \mathcal{T}_p^*\mathcal{M}$ is the dual space of $\mathcal{T}_p\mathcal{M}$, also called cotangent space
- $lackbox{} \langle \cdot\,,\cdot
 angle_p$ denotes the duality pairing on $\mathcal{T}_p^*\mathcal{M} imes \mathcal{T}_p\mathcal{M}$
- numerically we use musical isomorphisms $X = \xi^{\flat} \in \mathcal{T}_p \mathcal{M}$ to obtain a subset of $\mathcal{T}_p \mathcal{M}$

The Proximal Point Algorithm

Euclidean case. For $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, $\lambda > 0$, the proximal map given by [Moreau, 1965; Rockafellar, 1970]

 $\operatorname{prox}_{\lambda f}(x) = \operatorname{arg\,min}_{v \in \mathbb{R}^n} \left\{ f(y) + \frac{1}{2\lambda} ||y - x||^2 \right\}.$

Riemannian case. For $f: \mathcal{M} \to \overline{\mathbb{R}}$, $\lambda > 0$, the proximal map is given by

$$\operatorname{prox}_{\lambda \! f}(p) = rg \min_{q \in \mathcal{M}} \Bigl\{ \! f(q) + rac{1}{2\lambda} d(p,q)^2 \Bigr\}.$$

For both. A minimizer p^* of f is a fixed point for $prox_{\lambda f}$.

Proximal Point Algorithm (PPA). Given $p^{(0)} \in \mathcal{M}$, $\lambda_k > 0$, iterate

$$p^{(k+1)} = \operatorname{prox}_{\lambda_k f}(p^{(k)}).$$

The Cyclic Proximal Point Algorithm

For a splitting
$$f(p) = \sum_{i=1}^c f_i(p)$$
 and some $p_0 \in \mathcal{M}$, we can use

$$p_{k+rac{i+1}{c}} = \operatorname{prox}_{\lambda_k f_i}(p_{k+rac{i}{c}}), \qquad i = 0, \ldots, c-1, \quad k = 0, 1, \ldots$$

On a Hadamard manifold \mathcal{M} : Convergence to a minimizer of f if

- \triangleright all f_i proper, convex, lower semi-continuous
- $\setminus \{\lambda_k\}_{k\in\mathbb{N}} \in \ell_2(\mathbb{N}) \setminus \ell_1(\mathbb{N}).$
- also for
 - random order of the prox $_{\lambda f_i}$
 - ▶ inexact evaluations of the prox $_{\lambda f}$.

[Bačák, RB, Steidl, Weinmann, 2016]

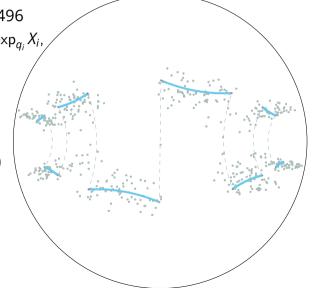
! no convergence rate

Denoising a Signal on Hyperbolic Space \mathcal{H}^2

- ▶ signal $q \in \mathcal{M}$, $(\mathcal{H}^2)^n$, n = 496
- noisy signal $\bar{q} \in \mathcal{M}$, $\bar{q}_i = \exp_{q_i} X_i$, $\sigma = 0.1$
- ► ROF Model:

$$rg \min_{oldsymbol{p} \in \mathcal{M}} \ rac{1}{n} \, \mathrm{d}_{\mathcal{M}}(oldsymbol{p}, oldsymbol{q})^2 \ + lpha \sum_{i=1}^{n-1} \mathrm{d}_{\mathcal{H}^2}(oldsymbol{p}_i, oldsymbol{p}_{i+1})$$

► Setting $\alpha = 0.05$ yields reconstruction p^* .



Algorithms for Denoising a Signal

► Riemannian Convex Bundle Method (RCBM)

[RB, Herzog, Jasa, 2024]

Proximal Bundle Algorithm (PBA)

[Hoseini Monjezi, Nobakhtian, Pouryayevali, 2021]

Subgradient Method (SGM)

[Ferreira, Oliveira, 1998]

► Cyclic Proximal Point Algorithm (CPPA)

[Bačák, 2014]

Algorithm	Iter.	Time (sec.)	Objective	Error
RCBM	3417	51.393	1.7929×10^{-3}	3.3194×10^{-4}
PBA	15 000	102.387	1.8153×10^{-3}	4.3874×10^{-4}
SGM	15 000	99.604	1.7920×10^{-3}	3.3080×10^{-4}
CPPA	15 000	94.200	1.7928×10^{-3}	3.3230×10^{-4}

The Douglas Rachford Algorithm

For a splitting f=g+h, where both are possibly nonsmooth, use the reflection at the proximal map

$$R_{\lambda f}(p) = \exp_{\text{prox}_{\lambda f}(p)}(-\log_{\text{prox}_{\lambda f}(p)}(p))$$
 (Euclidean: $2 \operatorname{prox}_{\lambda f}(x) - x$)

The Douglas Rachford algorithm reads for some $r^{(0)} \in \mathcal{M}, \ \eta > 0$ [RB, Persch, Steidl, 2016] $p^{(k)} = R_{\eta g}(r^{(k)})$

$$egin{aligned} q^{(k)} &= R_{\eta h}(p^{(k)}) \ r^{(k+1)} &= \gamma(\lambda_k; r^{(k)}, q^{(k)}) \end{aligned} \qquad (\gamma ext{ is a geodesic})$$

- converges on Hadamard manifolds if
 - g, h proper, convex, lsc.
 - $\lambda_k \in [0,1]$ and $\sum_k \lambda_k (1-\lambda_k) = \infty$
- ...to a fixed point of $R_{\lambda g} \circ R_{\lambda h}$ (in $r^{(k)}$)
- ...to a minimizer of f in the "shadow iterates" $prox_{ng}(r^{(k)})$

The Fenchel Conjugate

The Fenchel conjugate of a function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is given by

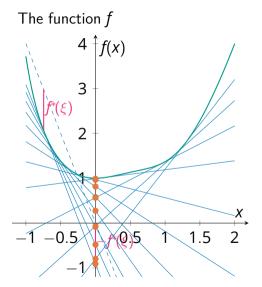
$$f^*(\xi) := \sup_{\mathbf{x} \in \mathbb{R}^n} \langle \xi, \mathbf{x} \rangle - f(\mathbf{x}) = \sup_{\mathbf{x} \in \mathbb{R}^n} \begin{pmatrix} \xi \\ -1 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{x} \\ f(\mathbf{x}) \end{pmatrix}$$

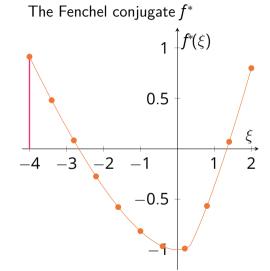
- lacktriangle given $\xi \in \mathbb{R}^n$: maximize the distance between ξ^T and f
- can also be written in the epigraph

The Fenchel biconjugate reads

$$f^{**}(x) = (f^*)^*(x) = \sup_{\xi \in \mathbb{R}^n} \langle \xi, x \rangle - f^*(\xi).$$

Illustration of the Fenchel Conjugate





The (Riemannian) *m*-Fenchel Conjugate

[RB, Herzog, Silva Louzeiro, Tenbrinck, Vidal-Núñez, 2021]

Idea. Localize to $C \subset M$ around a point m which "acts as" 0.

The m-Fenchel conjugate of a function $f\colon \mathcal{C} \to \overline{\mathbb{R}}$ is given by

$$f_m^*(\xi_m) \coloneqq \sup_{X \in \mathcal{L}_{\mathcal{C},m}} \{ \langle \xi_m, X \rangle - f(\exp_m X) \},$$

where $\mathcal{L}_{\mathcal{C},m} \coloneqq \{X \in \mathcal{T}_m \mathcal{M} \mid q = \exp_m X \in \mathcal{C} \text{ and } \|X\|_p = d(q,p)\}.$

Let $m' \in \mathcal{C}$. The mm'-Fenchel-biconjugate $F^{**}_{mm'} : \mathcal{C} \to \overline{\mathbb{R}}$ is given by

$$F_{mm'}^{**}(p) = \sup_{\xi_{m'} \in \mathcal{T}_m^* \mathcal{M}} \left\{ \langle \xi_{m'} \,, \log_{m'} p \rangle - F_m^* (\mathsf{P}_{m \leftarrow m'} \xi_{m'})
ight\},$$

where usually we only use the case m = m'.

The exact Riemannian Chambolle—Pock Algorithm

```
[RB, Herzog, Silva Louzeiro, Tenbrinck, Vidal-Núñez, 2021; Valkonen, 2014; Chambolle. Pock, 2011]
Input: m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n = \Lambda(m), \xi_n^{(0)} \in \mathcal{T}_n^* \mathcal{N}, \text{ and } \sigma, \tau, \theta > 0
  1. k \leftarrow 0
  2: \bar{p}^{(0)} \leftarrow p^{(0)}
  3: while not converged do
              \xi_n^{(k+1)} \leftarrow \operatorname{prox}_{\tau \sigma_*^*} \left( \xi_n^{(k)} + \tau \left( \log_n \Lambda(\bar{p}^{(k)}) \right)^{\flat} \right)
              p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma f} \left( \exp_{p^{(k)}} \left( \mathsf{P}_{p^{(k)} \leftarrow m} (-\sigma D \Lambda(m)^* [\xi_n^{(k+1)}])^{\sharp} \right) \right)
  6: \bar{p}^{(k+1)} \leftarrow \exp_{p^{(k+1)}} \left( -\theta \log_{p^{(k+1)}} p^{(k)} \right)
                k \leftarrow k + 1
  8: end while
Output: p^{(k)}
```


Proximal Gradient

For a splitting f = g + h, where g is smooth and h is possibly nonsmooth, both are convex.

The proximal gradient method reads for given $p^{(0)} \in \mathcal{M}$, $\lambda_k \in (0, \frac{1}{L}]$ reads

[RB, Jasa, John, Pfeffer, 2025b]

$$p^{(k+1)} = \operatorname{prox}_{\lambda_k h} \left(\exp_{p^{(k)}} (-\lambda_k \operatorname{grad} g(p^{(k)})) \right).$$

- convergence rates: sublinear (convex) linear (strongly convex)
- a generalization of the prox-grad inequality
- ightharpoonup even the nonconvex case: sublinear convergence to arepsilon-stationary points [RB, Jasa, John, Pfeffer, 2025a]
 - ! though here: proximal map maybe not unique minimizer

The Riemannian DC Algorithm

[RB, Ferreira, Santos, Souza, 2024]

To solve a Difference of Convex problem

$$\underset{p \in \mathcal{M}}{\operatorname{arg \, min}} g(p) - h(p).$$

use

The Riemannian Difference of Convex Algorithm.

Input: An initial point $p^{(0)} \in \text{dom}(g)$, g and $\partial_{\mathcal{M}} h$

- 1: Set k = 0.
- 2: while not converged do
- 3: Take $X^{(k)} \in \partial_{\mathcal{M}} h(p^{(k)})$
- 4: Compute the next iterate $p^{(k+1)}$ as

$$p^{(k+1)} \in \operatorname*{arg\,min}_{p \in \mathcal{M}} g(p) - \left(X^{(k)}, \log_{p^{(k)}} p\right)_{p^{(k)}}.$$

- 5: Set $k \leftarrow k + 1$
- 6. end while

Convergence of the Riemannian DCA

Let $\{p^{(k)}\}_{k\in\mathbb{N}}$ and $\{X^{(k)}\}_{k\in\mathbb{N}}$ be the iterates and subgradients of the RDCA.

Theorem.

[RB, Ferreira, Santos, Souza, 2024]

If \bar{p} is a cluster point of $\{p^{(k)}\}_{k\in\mathbb{N}}$, then $\bar{p}\in \text{dom}(g)$ and there exists a cluster point \bar{X} of $\{X^{(k)}\}_{k\in\mathbb{N}}$ s. t. $\bar{X}\in\partial g(\bar{p})\cap\partial h(\bar{p})$.

 \Rightarrow Every cluster point of $\{p^{(k)}\}_{k\in\mathbb{N}}$, if any, is a critical point of f.

Proposition.

[RB, Ferreira, Santos, Souza, 2024]

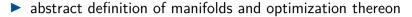
Let g be σ -strongly (geodesically) convex. Then

$$f(p^{(k+1)}) \le f(p^{(k)}) - \frac{\sigma}{2}d^2(p^{(k)}, p^{(k+1)})$$

and
$$\sum_{k=0}^{\infty} d^2(p^{(k)},p^{(k+1)}) < \infty$$
, so in particular $\lim_{k\to\infty} d(p^{(k)},p^{(k+1)}) = 0$.

Software

Goals of the Software – Why Julia?



- ⇒ implement abstract solvers on a generic manifold
- well-documented and well-tested
- ► fast.
- \Rightarrow "Run your favourite solver on your favourite manifold".

Why 💑 Julia?

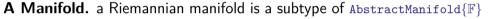
julialang.org

- high-level language, properly typed
- ► multiple dispatch, e.g. *(::AbstractMatrix, ::AbstractMatrix)
- ▶ just-in-time compilation, solves two-language problem ⇒ "nice to write" and as fast as C/C++
- ► I like the community

ManifoldsBase.jl - Motivation

Goal. Provide a generic interface to manifolds for

- defining own (new) manifolds
- lacktriangle implementing generic algorithms on an arbitrary manifold ${\mathcal M}$



- $ightharpoonup \mathbb{F} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$: field the manifold is build on
- stores all "general" information, (mainly) the manifold dimension
- example (form Manifolds.jl): M = Sphere(2)

Points and Tangent vectors.

- ▶ by default not typed, often <:AbstractArray
- we provide <:AbstractManifoldPoint and <:TVector for more advanced ones

Manifolds.jl

Goal. Provide a library of Riemannian manifolds, that is efficiently implemented and well-documented

Meta. generic implementations for $\mathcal{M}^{n\times m}$, $\mathcal{M}_1 \times \mathcal{M}_2$, vector- and tangent-bundles, esp. $T_p\mathcal{M}$, or Lie groups

Library. Implemented functions for

- ► Circle, Sphere, Torus, Hyperbolic, Projective Spaces, Hamiltonian
- ▶ (generalized, symplectic) Stiefel, Rotations
- ▶ (generalized, symplectic) Grassmann, fixed rank matrices
- Symmetric Positive Definite matrices, with fixed determinant
- ▶ (several) Multinomial, (skew-)symmetric, and symplectic matrices
- ► Tucker & Oblique manifold, Kendall's Shape space
- probability simplex, orthogonal and unitary matrices, ...

Manopt.jl

Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s, implement initialize_solver!(p, s) and step_solver!(p, s, i) ⇒ an algorithm in the Manopt.jl interface

Highlevel interfaces like gradient_descent(M, f, grad_f) on any manifold M from Manifolds.jl.

All provide debug output, recording, cache & counting capabilities, as well as a library of step sizes and stopping criteria.

Manopt family.

List of Algorithms in Manopt.jl

Derivatve-Free Nelder-Mead, Particle Swarm, CMA-ES, MADS

Subgradient-based Subgradient Method, Convex Bundle Method, Proximal Bundle Method

Gradient-based Gradient Descent, Conjugate Gradient, Stochastic,
Momentum, Nesterov, Averaged; Quasi-Newton with
(L-)BFGS, DFP, Broyden, SR1,...; Levenberg-Marquard

Hessian-based Trust Regions, Adaptive Regularized Cubics (ARC) splitting Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point, Proximal Gradient

constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe, Projected Gradient, Interior Point Newton

nonconvex Difference of Convex Algorithm, DCPPA

A Numerical Example

The Difference of Convex Algorithm in Manopt.jl

The algorithm is implemented and released in Julia using Manopt.jl¹. It can be used with any manifold from Manifolds.jl

A solver call looks like

```
q = difference_of_convex_algorithm(M, f, g, \partial h, p0) where one has to implement f(M, p), g(M, p), and \partial h(M, p).
```

- ▶ a sub problem is generated if keyword grad_g= is set
- ▶ an efficient version of its cost and gradient is provided
- you can specify the sub-solver using sub_state= to also set up the specific parameters of your favourite algorithm

¹see https://manoptjl.org/stable/solvers/difference_of_convex/

Rosenbrock and First Order Methods

Problem. We consider the classical Rosenbrock example²

$$\underset{x \in \mathbb{R}^2}{\arg \min} \, \alpha (x_1^2 - x_2)^2 + (x_1 - b)^2,$$

where a, b > 0, usually b = 1 and $a \gg b$, here: $a = 2 \cdot 10^5$.

Known Minimizer
$$x^* = \begin{pmatrix} b \\ b^2 \end{pmatrix}$$
 with cost $f(x^*) = 0$.

Goal. Compare first-order methods, e.g. using the (Euclidean) gradient

$$\nabla f(x) = \begin{pmatrix} 4a(x_1^2 - x_2) \\ -2a(x_1^2 - x_2) \end{pmatrix} + \begin{pmatrix} 2(x_1 - b) \\ 0 \end{pmatrix}$$

²available online in ManoptExamples.il

A "Rosenbrock-Metric" on \mathbb{R}^2

In our Riemannian framework, we can introduce a new metric on \mathbb{R}^2 as

$$G_{\!
ho} \coloneqq egin{pmatrix} 1 + 4 p_1^2 & -2 p_1 \ -2 p_1 & 1 \end{pmatrix}, \ ext{with inverse} \ G_{\!
ho}^{-1} = egin{pmatrix} 1 & 2 p_1 \ 2 p_1 & 1 + 4 p_1^2 \end{pmatrix}.$$

We obtain $(X, Y)_{\rho} = X^{\mathsf{T}} G_{\rho} Y$

The exponential and logarithmic map are given as

$$\exp_p(X) = \begin{pmatrix} p_1 + X_1 \\ p_2 + X_2 + X_1^2 \end{pmatrix}, \qquad \log_p(q) = \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 - (q_1 - p_1)^2 \end{pmatrix}.$$

Manifolds.jl:

Implement these functions on $MetricManifold(\mathbb{R}^2)$, RosenbrockMetric()).

The Riemannian Gradient w.r.t. the new Metric

Let $f: \mathcal{M} \to \mathbb{R}$. Given the Euclidean gradient $\nabla f(p)$, its Riemannian gradient grad $f: \mathcal{M} \to T\mathcal{M}$ is given by

$$\operatorname{\mathsf{grad}} f(p) = G_p^{-1} \nabla f(p).$$

While we could implement this denoting $abla f(p) = ig(f_1'(p) \ f_2'(p)ig)^{\mathsf{T}}$ using

$$\left\langle \operatorname{grad} f(q), \log_q p \right\rangle_q = (p_1 - q_1) f_1'(q) + (p_2 - q_2 - (p_1 - q_1)^2) f_2'(q),$$

but it is automatically done in Manopt.jl.

The Experiment Setup

Algorithms. We now compare

- **1.** The Euclidean gradient descent algorithm on \mathbb{R}^2 ,
- 2. The Riemannian gradient descent algorithm on \mathcal{M} ,
- **3.** The Difference of Convex Algorithm on \mathbb{R}^2 ,
- **4.** The Difference of Convex Algorithm on \mathcal{M} .

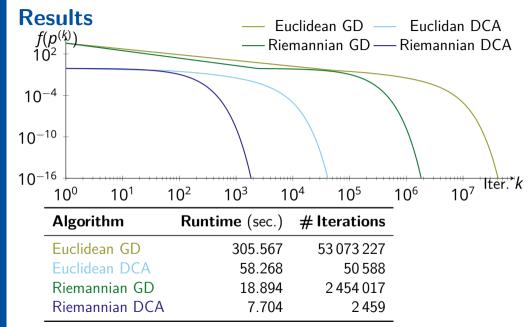
For DCA third we split f into f(x) = g(x) - h(x) with

$$g(x) = a(x_1^2 - x_2)^2 + 2(x_1 - b)^2$$
 and $h(x) = (x_1 - b)^2$.

Initial point.
$$p_0 = \frac{1}{10} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 with cost $f(p_0) \approx 7220.81$.

Stopping Criterion.

$$d_{\mathcal{M}}(p^{(k)}, p^{(k-1)}) < 10^{-16} \text{ or } \|\text{grad}f(p^{(k)})\|_p < 10^{-16}.$$



Summary

Nonsmooth optimization on manifolds appears in several applications.

- many algorithms can be generalized
- many properties carry over, like convergence results
- Fenchel duality can be generalized

[Schiela, Herzog, RB, 2024]

Manifolds.jl & Manopt.jl

[RB, 2022; Axen, Baran, RB, Rzecki, 2023]

- numerical examples available in ManoptExamples.jl
- ▶ Next. LieGroups.jl

Selected References

RB (2022). "Manopt.jl: Optimization on Manifolds in Julia". Journal of Open Source Software 7.70, p. 3866. DOI: 10.21105/joss.03866.

RB; O. P. Ferreira; E. M. Santos; J. C. d. O. Souza (2024). "The difference of convex algorithm on Hadamard manifolds". *Journal of Optimization Theory and Applications*. DOI: 10.1007/s10957-024-02392-8.

RB; H. Jasa; P. John; M. Pfeffer (2025a). The Intrinsic Riemannian Proximal Gradient Method for Nonconvex Optimization. arXiv: 2506.09775.

— (2025b). The Intrinsic Riemannian Proximal Gradient Method for Convex Optimization. arXiv: 2507.16055.

RB; J. Persch; G. Steidl (2016). "A parallel Douglas Rachford algorithm for minimizing ROF-like functionals on images with values in symmetric Hadamard manifolds". *SIAM Journal on Imaging Sciences* 9.4, pp. 901–937. DOI: 10.1137/15M1052858.

