Nonsmooth Optimization on
Riemannian Manifolds
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Nonsmooth Optimization on Riemannian Manifolds

We are looking for numerical algorithms to find

arg min f(p)
peEM

where

» M is a Riemannian manifold

» f: M — R is a function

/\ f might be nonsmooth and/or nonconvex
/\ M might be high-dimensional

¢ f has some “nice structure”




Manifold-valued signal and image processing

» variational models for
denoising, inpainting, deconvolution, segmentation, ..
» applications in medical imaging, computer vision
4a nonlinear (non-Euclidean) data

Examples

» phase-valued data (S)

» wind-fields, GPS (S?)

> DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

Avrtificial noisy phase-valued data.




Manifold-valued signal and image processing

» variational models for
denoising, inpainting, deconvolution, segmentation, ..
» applications in medical imaging, computer vision
A& nonlinear (non-Euclidean) data

Examples

» phase-valued data (S')

» wind-fields, GPS (S?)

> DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

InSAR-Data of Mt. Vesuvius.

[Rocca, Prati, Guarnieri, 1997]




Manifold-valued signal and image processing

» variational models for
denoising, inpainting, deconvolution, segmentation, ..
» applications in medical imaging, computer vision
A& nonlinear (non-Euclidean) data

Examples

» phase-valued data (S')

» wind-fields, GPS (S?)

> DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

Artificial noisy data on the sphere S?.




Manifold-valued signal and image processing
» variational models for
denoising, inpainting, deconvolution, segmentation, ..
» applications in medical imaging, computer vision
A& nonlinear (non-Euclidean) data

Examples

» phase-valued data (S')

» wind-fields, GPS (S?)

> DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

Artificial diffusion data,
each pixel is a sym. pos. def. matrix.




Manifold-valued signal and image processing

» variational models for
denoising, inpainting, deconvolution, segmentation, ..
» applications in medical imaging, computer vision
A& nonlinear (non-Euclidean) data

Examples

» phase-valued data (S')

» wind-fields, GPS (S?)

> DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

DT-MRI of the human brain.

Camino Profject: cmic.cs.ucl.ac.uk/camino



http://cmic.cs.ucl.ac.uk/camino

Manifold-valued signal and image processing

» variational models for
denoising, inpainting, deconvolution, segmentation, ..
» applications in medical imaging, computer vision
A& nonlinear (non-Euclidean) data

Examples

» phase-valued data (S')

» wind-fields, GPS (S?)

> DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

Grain orientations in EBSD data.

MTEX toolbox: mtex-toolbox.github.io



https://mtex-toolbox.github.io

Constraints and/or geometry

constraints

\4

needs an embedding

v

might not always yield
a manifold

slightly more flexible

algorithms have to deal
with constraints

® OO0

results might be
infeasible

© © ©006\vy

geometry

might work agnostic of an embedding
quotient manifolds

we can use any uncinstrained
algorithm...

..after adapting it to the manifold
setting

algorithms stay on the manifold

@ always feasible

We can also consider a combination of both:

constrained optimization on manifolds.

[Liu, Boumal, 2019; RB, Herzog, 2019]



A Riemannian Manifold M

Notation.

» Logarithmic map Iogp q=70;p,q) ToM
» Exponential map expr = px(1)
» Geodesic y(;p, q) exp
» Tangent space 7, M NP
» inner product (-, -)p \
> parallel transport PTp.q(X) . = Pq<_/‘I,Y
» distance function d(p, q) = S

p (P, q) q

Numerics.

exp, and log, maybe not available
efficiently/ in closed form

=> use a retraction and its inverse instead. M




B (Geodesic) Convexity

NTNU

[Sakai, 1996; Udriste, 1994]

A set C C M is called (strongly geodesically) convex
if for all p, q € C the geodesic ¥(+;p, q) is unique and lies in C.

A function f: C — R is called (geodesically) convex
if for all p,q € C the composition f(y(t;p, q)),t € [0, 1], is convex.



The Riemannian Subdifferential

Let C be a convex set.

The subdifferential Off at p € Cis given by [Ferreira, Oliveira, 2002; Lee, 2003; Udriste, 1994]

Inf(p) = {€ € TAM | f(q) > f(p) + (€. log, q)p for q € C},
where
> T, M is the dual space of 7, M, also called cotangent space
> (-,-)p denotes the duality pairing on T, M x ToM

» numerically we use musical isomorphisms X = £’ € TpM to obtain a

subset of 7, M




The Proximal Point Algorithm

Euclidean case. For f: R" — R, A > 0, the proximal map given by

[Moreau, 1965; Rockafellar, 1970]

_ : 1 2
proxy(x) = argmin{f(y) + 5l = x| .

Riemannian case. For f: M — R, A > 0, the proximal map is given by

[Ferreira, Oliveira, 2002]

proxy(p) = argmin{(q) + o d(p.q)’ ).

geMm
For both. A minimizer p* of fis a fixed point for prox,s.

Proximal Point Algorithm (PPA). Given p(® ¢ M, )\, > 0, iterate

p*tD = prox, (p®).




The Cyclic Proximal Point Algorithm ... ... e s0

For a splitting f(p) Zf, ) and some pg € M, we can use

pk+f+T1:proxAkﬁ_(pk+£), i=0,....,c—1, k=01,...

On a Hadamard manifold M: Convergence to a minimizer of f if
» all f; proper, convex, lower semi-continuous
> {Mctken € (N)\O(N).
» also for

> random order of the prox,y
» inexact evaluations of the Proxyf, [Bagak, RB, Steidl, Weinmann, 2016]

! no convergence rate




Denoising a Signal on Hyperbolic Space 7{*

> signal g € M, (H?)", n = 496

> g € M, gi = expg Xi,
o=0.1

» ROF Model:

1
argmin —du(p,q)°
pem N

n—1

+a Z dz2(Pi, Pis1)
i—1

» Setting a = 0.05 yields




B Algorithms for Denoising a Signal

NTNU

» Riemannian Convex Bundle Method (RCBM) [RB, Herzog, Jasa, 2024]
» Proximal Bundle Algorithm (PBA) [Hoseini Monjezi, Nobakhtian, Pouryayevali, 2021]
> Subgradient Method (SGM) [Ferreira, Oliveira, 1998]
» Cyclic Proximal Point Algorithm (CPPA) [Bacsk, 2014]
Algorithm  Iter.  Time (sec.) Objective Error

RCBM 3417 51.393 1.7929 x 103 3.3194 x 104
PBA 15000 102.387 1.8153 x 1073 4.3874 x 1074
SGM 15000 99.604 1.7920 x 102 3.3080 x 10~

CPPA 15000 94.200 1.7928 x 103 3.3230 x 1074




The Douglas Rachford Algorithm

For a splitting f = g + h, where both are possibly nonsmooth, use the
reflection at the proximal map

R)\f(p) = expproxkf(p) <_ Iogprox/\f(p) (p)> (Euclidean: 2 pI’OX)\f(X) - X)

The Douglas Rachford algorithm reads for some r® € M, n >0
(k) (k) [RB, Persch, Steidl, 2016]
P = Ryg(r)

0% = R(p)
ro) — (N r® g®) (v is a geodesic)

» converges on Hadamard manifolds if
» g, h proper, convex, Isc.
> N\ € [0,1] and Zk)‘k(1 — )‘k) =00
> ..to a fixed point of Ryg o Ry (in r0))
» ..to a minimizer of f in the “shadow iterates” proxng(r(k))




B The Fenchel Conjugate

NTNU The Fenchel conjugate of a function f: R” — R is given by

P = mpien 10 - 2 () (1)

> given £ € R": maximize the distance between £T- and
g

P can also be written in the epigraph

The Fenchel biconjugate reads

) = ()" (%) = sup (&, x) = f($)-

§ER”



B lllustration of the Fenchel Conjugate
The function f The Fenchel conjugate f*

G

0.5 |
/




The (Riemannian) m-Fenchel Conjugate

[RB, Herzog, Silva Louzeiro, Tenbrinck, Vidal-Ndfiez, 2021]

Idea. Localize to C C M around a point m which “acts as” 0.

The m-Fenchel conjugate of a function f: C — R is given by

fo(&m) = sup {(&m,X) — flexpm X) },

XEL:C’m

where Lo ={X € TpM | g =exp,, X € C and || X]|, = d(q,p)}.

Let m" € C. The mm’-Fenchel-biconjugate F:* ,: C — R is given by

n;km/(p) = sup {<£m’ , log p> - an(Pmem'ém’)}a
Em €T M

where usually we only use the case m = m'.




The exact Riemannian Chambolle—Pock Algorithm

[RB, Herzog, Silva Louzeiro, Tenbrinck, Vidal-Ndfiez, 2021; Valkonen, 2014; Chambolle, Pock, 2011]

Input: m, p© € C c M, n=Am )gn €TN,and o, 7,0 >0
1. k<0
PO  p©

while not converged do

S proxg: (647 + 7 (log,A(PY)))

5: Pk proxaf(exppw (Pp(m_m( oDA(m)*[<)" W)D ))

: ,(_J(k+1) < eXPp(ki) (—19 |ng(k+1) ,D(k))
7 k< k+1
8: end while
Output: p

sen




B Proximal Gradient

NTNU

For a splitting f = g + h, where g is smooth and h is possibly nonsmooth,
both are convex.
The proximal gradient method reads for given p(® € M, X\, € (0, %] reads

[RB, Jasa, John, Pfeffer, 2025b]

ptth = Proxy, p (eXPp(k)(_)\k grad g(P(k))))-

v

convergence rates: sublinear (convex) linear (strongly convex)

v

a generalization of the prox-grad inequality

» even the nonconvex case: sublinear convergence to e-stationary

pOIntS [RB, Jasa, John, Pfeffer, 2025a]

I though here: proximal map maybe not unique minimizer



The Riemannian DC Algorithm

To solve a Difference of Convex problem

argming(p) — h(p).
peM

[RB, Ferreira, Santos, Souza, 2024]

use

The Riemannian Difference of Convex Algorithm.
Input: An initial point p(© € dom(g), g and dh

1: Set k=0.

2: while not converged do

3: Take X € 9h(p®)

4 Compute the next iterate p+1) as

pl e argming(p) — (XY, logp p)p(k)'
pem

o

Set k — k+1
6: end while




Convergence of the Riemannian DCA
Let {p®}cx and {X®)},cn be the iterates and subgradients of the RDCA.

Theorem_ [RB, Ferreira, Santos, Souza, 2024]

If p is a cluster point of {p®},cy, then p € dom(g) and there exists a
cluster point X of {X()}, .y s.t. X € 9g(p) N oh(p).

= Every cluster point of {p(®)},cy, if any, is a critical point of f.

Proposition. [RB, Ferreira, Santos, Souza, 2024]

Let g be o-strongly (geodesically) convex. Then

fip* ) < f(p®) — 5d*(p®, p)

and E d?(p® p* ) < o0, so in particular I|m d(p®, p*+My = 0.
k— o0
k=0
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Goals of the Software — Why Julia?

Goals.
» abstract definition of manifolds and optimization thereon

= implement abstract solvers on a generic manifold

» well-documented and well-tested
> fast.

= “Run your favourite solver on your favourite manifold".

Why ¢e Julia? julialang.org
» high-level language, properly typed
» multiple dispatch, e.g. *(: :AbstractMatrix, ::AbstractMatrix)

P just-in-time compilation, solves two-language problem
= “nice to write" and as fast as C/C++

» | like the community



https://julialang.org

B ManifoldsBase.jl — Motivation @

Goal. Provide a generic interface to manifolds for @.@
» defining own (new) manifolds
» implementing generic algorithms on an arbitrary manifold M

A Manifold. a Riemannian manifold is a subtype of AbstractManifold{F}
» F e {R,C,H}: field the manifold is build on
» stores all “general” information, (mainly) the manifold dimension

» example (form Manifolds.jl): M = Sphere(2)

Points and Tangent vectors.
» by default not typed, often <:AbstractArray

> we provide <:AbstractManifoldPoint and <:TVector for more
advanced ones




Manifolds.jl

Goal. Provide a library of Riemannian manifolds,
that is efficiently implemented and well-documented

[Axen, Baran, RB, Rzecki, 2023]

Meta. generic implementations for M™™ M; x Ms,
vector- and tangent-bundles, esp. T, M, or Lie groups

Library. Implemented functions for

» Circle, Sphere, Torus, Hyperbolic, Projective Spaces, Hamiltonian
(generalized, symplectic) Stiefel, Rotations

(generalized, symplectic) Grassmann, fixed rank matrices
Symmetric Positive Definite matrices, with fixed determinant
(several) Multinomial, (skew-)symmetric, and symplectic matrices

>
>
>
>
» Tucker & Oblique manifold, Kendall's Shape space
>

probability simplex, orthogonal and unitary matrices, ..



B Manopt.jl
Nt Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s,
implement initialize_solver!(p, s) and step_solver!(p, s, i)
= an algorithm in the Manopt.j1 interface

Highlevel interfaces like gradient_descent (M, f, grad_f)
on any manifold M from Manifolds.j1.

All provide debug output, recording, cache & counting capabilities,
as well as a library of step sizes and stopping criteria.

Manopt family.

e® manoptjl.org F manopt.org A pymanopt.org

[RB, 2022] [Boumal, Mishra, Absil, Sepulchre, 2014] [Townsend, Koep, Weichwald, 2016]



https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org

B List of Algorithms in Manopt.jl

Derivatve-Free Nelder-Mead, Particle Swarm, CMA-ES, MADS

Subgradient-based Subgradient Method, Convex Bundle Method,
Proximal Bundle Method

Gradient-based Gradient Descent, Conjugate Gradient, Stochastic,
Momentum, Nesterov, Averaged; Quasi-Newton with
(L-)BFGS, DFP, Broyden, SR1,...;  Levenberg-Marquard
Hessian-based Trust Regions, Adaptive Regularized Cubics (ARC)
splitting Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point,
Proximal Gradient

(
N

constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe,
Projected Gradient, Interior Point Newton

nonconvex Difference of Convex Algorithm, DCPPA

e® manoptjl.org/stable/solvers/



https://www.manoptjl.org/stable/solvers/
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The Difference of Convex Algorithm in Manopt.jl

The algorithm is implemented and released in Julia using Manopt.j1t.
It can be used with any manifold from Manifolds.jl1

A solver call looks like

q = difference_of_convex_algorithm(M, f, g, Oh, pO0)

where one has to implement £ (M, p), g, p), and dh(M, p).

» a sub problem is generated if keyword grad_g= is set
» an efficient version of its cost and gradient is provided

» you can specify the sub-solver using sub_state=
to also set up the specific parameters of your favourite algorithm

lsee https://manoptjl.org/stable/solvers/difference of _convex/


https://manoptjl.org/stable/solvers/difference_of_convex/

Rosenbrock and First Order Methods

Problem. We consider the classical Rosenbrock example?

arg min a(x% —Xz)2 + (X1 - b)zv
x€R?

where a,b > 0, usually b =1 and a > b, here: a =2 -10°.

Known Minimizer x* = (:2> with cost f(x*) = 0.
Goal. Compare first-order methods, e. g. using the (Euclidean) gradient
~( da(x? —x2) 2(x1 — b)
Vi) = (—Za(x$ —X2) * 0

2available online in ManoptExamples.jl



https://juliamanifolds.github.io/ManoptExamples.jl/stable/examples/Difference-of-Convex-Rosenbrock/

“Rosenbrock-Metric” on R?

In our Riemannian framework, we can introduce a new metric on R? as

(1 +4p? —2p, . (1 2p;
Gp = ( —2p; 1 , with inverse G, = 20, 1+4p2)

We obtain (X,Y), = X"G,Y
The exponential and logarithmic map are given as

B p1+ X _ q1 — Pi
epr(X) = <p2 X —f-X%) ) |ng(q) - (qz —p2 — (Q1 _p1)2> '

Manifolds. j1:
Implement these functions on MetricManifold(R"2, RosenbrockMetric()).



The Riemannian Gradient w.r.t. the new Metric

Let f: M — R. Given the Euclidean gradient Vf(p), its Riemannian
gradient grad f: M — TM is given by

gradf(p) = G, ' Vf(p).
While we could implement this denoting Vf(p) (f1 ) using
(820 f(a).log,p)_ = (p1 —4)fi(@) + (b2 — G2 — (1 —41)°)f3(0).

but it is automatically done in Manopt. j1.




The Experiment Setup

Algorithms. We now compare
1. The Euclidean gradient descent algorithm on R?,
2. The Riemannian gradient descent algorithm on M,
3. The Difference of Convex Algorithm on R?,
4. The Difference of Convex Algorithm on M.

For DCA third we split f into f(x) = g(x) — h(x) with
g)=a(¢ —x2)" + 20 —b)*> and  h(x) = (x1 —b)*.

Initial point. po = & (;) with cost f(po) ~ 7220.81.

Stopping Criterion.
da(p¥, D) < 107 or [lgrad f(p®)]|, < 1077,




Results —— Euclidean GD Euclidan DCA

’Ifgg(l)\ — Riemannian GD — Riemannian DCA
1074+
10—10 1
1016 1 1 1 1 1 1 —Tterk
109 10" 102 10®  10* 105 106 107
Algorithm Runtime (sec.) # Iterations
Euclidean GD 305.567 53073227
58.268 50588
Riemannian GD 18.894 2454017

Riemannian DCA 7.704 2459




B Summary

NTNU

>

>
>
>
>

v

Nonsmooth optimization on manifolds appears in several applications.

many algorithms can be generalized
many properties carry over, like convergence results

Fenchel duality can be generalized [Schiela, Herzog, RB, 2024]
Manifolds. jl & Manopt.jl [RB, 2022; Axen, Baran, RB, Rzecki, 2023]

numerical examples available in ManoptExamples. j1

Next. LieGroups.jl
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