
N
or

ge
s

te
kn

isk
-n

at
ur

vi
te

ns
ka

pe
lig

e
un

iv
er

sit
et

Nonsmooth Optimization on
Riemannian Manifolds
Ronny Bergmann
NTNU, Trondheim, Norway.

Data-Enabled Science Seminar
Department of Mathematics, University of Houston,
Houston, TX, October 10, 2025.

2

Nonsmooth Optimization on Riemannian Manifolds

We are looking for numerical algorithms to find

argmin
p∈M

f(p)

where
▶ M is a Riemannian manifold
▶ f :M→ R is a function

f might be nonsmooth and/or nonconvex
M might be high-dimensional
f has some “nice structure”

3

Manifold-valued signal and image processing
▶ variational models for

denoising, inpainting, deconvolution, segmentation, …
▶ applications in medical imaging, computer vision

nonlinear (non-Euclidean) data

Examples

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

Artificial noisy phase-valued data.

3

Manifold-valued signal and image processing
▶ variational models for

denoising, inpainting, deconvolution, segmentation, …
▶ applications in medical imaging, computer vision

nonlinear (non-Euclidean) data

Examples

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

InSAR-Data of Mt. Vesuvius.
[Rocca, Prati, Guarnieri, 1997]

3

Manifold-valued signal and image processing
▶ variational models for

denoising, inpainting, deconvolution, segmentation, …
▶ applications in medical imaging, computer vision

nonlinear (non-Euclidean) data

Examples

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

Artificial noisy data on the sphere S2.

3

Manifold-valued signal and image processing
▶ variational models for

denoising, inpainting, deconvolution, segmentation, …
▶ applications in medical imaging, computer vision

nonlinear (non-Euclidean) data

Examples

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

Artificial diffusion data,
each pixel is a sym. pos. def. matrix.

3

Manifold-valued signal and image processing
▶ variational models for

denoising, inpainting, deconvolution, segmentation, …
▶ applications in medical imaging, computer vision

nonlinear (non-Euclidean) data

Examples

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

DT-MRI of the human brain.
Camino Profject: cmic.cs.ucl.ac.uk/camino

http://cmic.cs.ucl.ac.uk/camino

3

Manifold-valued signal and image processing
▶ variational models for

denoising, inpainting, deconvolution, segmentation, …
▶ applications in medical imaging, computer vision

nonlinear (non-Euclidean) data

Examples

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

Grain orientations in EBSD data.
MTEX toolbox: mtex-toolbox.github.io

https://mtex-toolbox.github.io

4

Constraints and/or geometry

constraints

▶ needs an embedding
▶ might not always yield

a manifold
slightly more flexible
algorithms have to deal
with constraints
results might be
infeasible

geometry

▶ might work agnostic of an embedding
quotient manifolds
we can use any uncinstrained
algorithm…
…after adapting it to the manifold
setting
algorithms stay on the manifold

always feasible

We can also consider a combination of both:
constrained optimization on manifolds. [Liu, Boumal, 2019; RB, Herzog, 2019]

5

A Riemannian Manifold M
Notation.
▶ Logarithmic map logp q = γ̇(0;p,q)
▶ Exponential map expp X = γp,X(1)
▶ Geodesic γ(·;p , q)
▶ Tangent space TpM
▶ inner product (· , ·)p
▶ parallel transport PTp←q(X)
▶ distance function d(p,q)

Numerics.
expp and logp maybe not available
efficiently/ in closed form
⇒ use a retraction and its inverse instead.

γ(·;p , q)p q

expp
logp

X

logp p

TpM

M

Y
Pq←pY

6

(Geodesic) Convexity

[Sakai, 1996; Udrişte, 1994]

A set C ⊂M is called (strongly geodesically) convex
if for all p,q ∈ C the geodesic γ(·;p , q) is unique and lies in C.

A function f : C → R is called (geodesically) convex
if for all p,q ∈ C the composition f(γ(t;p , q)), t ∈ [0,1], is convex.

7

The Riemannian Subdifferential

Let C be a convex set.
The subdifferential of f at p ∈ C is given by [Ferreira, Oliveira, 2002; Lee, 2003; Udrişte, 1994]

∂Mf(p) :=
{
ξ ∈ T ∗pM

∣∣ f(q) ≥ f(p) + ⟨ξ , logp q⟩p for q ∈ C
}
,

where
▶ T ∗pM is the dual space of TpM, also called cotangent space
▶ ⟨· , ·⟩p denotes the duality pairing on T ∗pM×TpM
▶ numerically we use musical isomorphisms X = ξ♭ ∈ TpM to obtain a

subset of TpM

8

The Proximal Point Algorithm
Euclidean case. For f : Rn → R, λ > 0, the proximal map given by

[Moreau, 1965; Rockafellar, 1970]

proxλf(x) = argmin
y∈Rn

{
f(y) +

1
2λ
∥y− x∥2

}
.

Riemannian case. For f :M→ R, λ > 0, the proximal map is given by
[Ferreira, Oliveira, 2002]

proxλf(p) = argmin
q∈M

{
f(q) +

1
2λ

d(p,q)2
}
.

For both. A minimizer p∗ of f is a fixed point for proxλf.

Proximal Point Algorithm (PPA). Given p(0) ∈M, λk > 0, iterate

p(k+1) = proxλkf(p
(k)).

9

The Cyclic Proximal Point Algorithm [Bertsekas, 2011; Bačák, 2014]

For a splitting f(p) =
c∑

i=1

fi(p) and some p0 ∈M, we can use

pk+ i+1
c
= proxλkfi(pk+ i

c
), i = 0, . . . , c− 1, k = 0,1, . . .

On a Hadamard manifold M: Convergence to a minimizer of f if
▶ all fi proper, convex, lower semi-continuous
▶ {λk}k∈N ∈ ℓ2(N)\ℓ1(N).
▶ also for

▶ random order of the proxλfi▶ inexact evaluations of the proxλfi
[Bačák, RB, Steidl, Weinmann, 2016]

! no convergence rate

10

Denoising a Signal on Hyperbolic Space H2

▶ signal q ∈M, (H2)n, n = 496
▶ noisy signal q̄ ∈M, q̄i = expqi Xi,

σ = 0.1
▶ ROF Model:

argmin
p∈M

1
n
dM(p,q)2

+ α
n−1∑
i=1

dH2(pi,pi+1)

▶ Setting α = 0.05 yields
reconstruction p∗.

11

Algorithms for Denoising a Signal

▶ Riemannian Convex Bundle Method (RCBM) [RB, Herzog, Jasa, 2024]

▶ Proximal Bundle Algorithm (PBA) [Hoseini Monjezi, Nobakhtian, Pouryayevali, 2021]

▶ Subgradient Method (SGM) [Ferreira, Oliveira, 1998]

▶ Cyclic Proximal Point Algorithm (CPPA) [Bačák, 2014]

Algorithm Iter. Time (sec.) Objective Error
RCBM 3417 51.393 1.7929× 10−3 3.3194× 10−4

PBA 15000 102.387 1.8153× 10−3 4.3874× 10−4
SGM 15000 99.604 1.7920× 10−3 3.3080× 10−4

CPPA 15000 94.200 1.7928× 10−3 3.3230× 10−4

12

The Douglas Rachford Algorithm
For a splitting f = g+ h, where both are possibly nonsmooth, use the
reflection at the proximal map

Rλf(p) = expproxλf(p)
(
− logproxλf(p)(p)

)
(Euclidean: 2 proxλf(x)− x)

The Douglas Rachford algorithm reads for some r(0) ∈M, η > 0
[RB, Persch, Steidl, 2016]

p(k) = Rηg(r(k))
q(k) = Rηh(p(k))

r(k+1) = γ(λk; r(k),q(k)) (γ is a geodesic)

▶ converges on Hadamard manifolds if
▶ g,h proper, convex, lsc.
▶ λk ∈ [0,1] and

∑
k λk(1− λk) =∞

▶ …to a fixed point of Rλg ◦ Rλh (in r(k))
▶ …to a minimizer of f in the “shadow iterates” proxηg(r(k))

13

The Fenchel Conjugate
The Fenchel conjugate of a function f : Rn → R is given by

f ∗(ξ) := sup
x∈Rn
⟨ξ, x⟩ − f(x) = sup

x∈Rn

(
ξ
−1

)T(x
f(x)

)

▶ given ξ ∈ Rn: maximize the distance between ξT· and f
▶ can also be written in the epigraph

The Fenchel biconjugate reads

f ∗ ∗(x) = (f ∗) ∗(x) = sup
ξ∈Rn
⟨ξ , x⟩ − f ∗(ξ).

14

Illustration of the Fenchel Conjugate

−1 −0.5 0.5 1 1.5 2

−1

1

2

3

4

f∗(ξ)

−f∗(ξ)

x

f(x)

The function f

−4 −3 −2 −1 1 2

−1

−0.5

0.5

1

ξ

f∗(ξ)

The Fenchel conjugate f ∗

15

The (Riemannian) m-Fenchel Conjugate
[RB, Herzog, Silva Louzeiro, Tenbrinck, Vidal-Núñez, 2021]

Idea. Localize to C ⊂M around a point m which “acts as” 0.
The m-Fenchel conjugate of a function f : C → R is given by

f ∗m(ξm) := sup
X∈LC,m

{
⟨ξm , X⟩ − f(expm X)

}
,

where LC,m := {X ∈ TmM | q = expm X ∈ C and ∥X∥p = d(q,p)}.

Let m′ ∈ C. The mm′-Fenchel-biconjugate F∗∗mm′ : C → R is given by

F∗∗mm′(p) = sup
ξm′∈T ∗

m′M

{
⟨ξm′ , logm′ p⟩ − F∗m(Pm←m′ξm′)

}
,

where usually we only use the case m = m′.

16

The exact Riemannian Chambolle–Pock Algorithm
[RB, Herzog, Silva Louzeiro, Tenbrinck, Vidal-Núñez, 2021; Valkonen, 2014; Chambolle, Pock, 2011]

Input: m, p(0) ∈ C ⊂M, n = Λ(m), ξ(0)n ∈ T ∗nN , and σ, τ, θ > 0
1: k← 0
2: p̄(0) ← p(0)

3: while not converged do
4: ξ

(k+1)
n ← proxτg ∗

n

(
ξ
(k)
n + τ

(
lognΛ(p̄(k))

)
♭
)

5: p(k+1) ← proxσf

(
expp(k)

(
Pp(k)←m

(
− σDΛ(m)∗[ξ

(k+1)
n]

)
♯
))

6: p̄(k+1) ← expp(k+1)
(
−θ logp(k+1) p(k)

)
7: k← k+ 1
8: end while

Output: p(k)

17

Proximal Gradient

For a splitting f = g+ h, where g is smooth and h is possibly nonsmooth,
both are convex.
The proximal gradient method reads for given p(0) ∈M, λk ∈ (0, 1L] reads

[RB, Jasa, John, Pfeffer, 2025b]

p(k+1) = proxλkh
(
expp(k)(−λk grad g(p(k)))

)
.

▶ convergence rates: sublinear (convex) linear (strongly convex)
▶ a generalization of the prox-grad inequality
▶ even the nonconvex case: sublinear convergence to ε-stationary

points [RB, Jasa, John, Pfeffer, 2025a]

! though here: proximal map maybe not unique minimizer

18

The Riemannian DC Algorithm [RB, Ferreira, Santos, Souza, 2024]
To solve a Difference of Convex problem

argmin
p∈M

g(p)− h(p).

use

The Riemannian Difference of Convex Algorithm.
Input: An initial point p(0) ∈ dom(g), g and ∂Mh

1: Set k = 0.
2: while not converged do
3: Take X(k) ∈ ∂Mh(p(k))
4: Compute the next iterate p(k+1) as

p(k+1) ∈ argmin
p∈M

g(p)−
(
X(k), logp(k) p

)
p(k) .

5: Set k← k+ 1
6: end while

19

Convergence of the Riemannian DCA
Let {p(k)}k∈N and {X(k)}k∈N be the iterates and subgradients of the RDCA.
Theorem. [RB, Ferreira, Santos, Souza, 2024]

If p̄ is a cluster point of {p(k)}k∈N, then p̄ ∈ dom(g) and there exists a
cluster point X̄ of {X(k)}k∈N s. t. X̄ ∈ ∂g(p̄) ∩ ∂h(p̄).
⇒ Every cluster point of {p(k)}k∈N, if any, is a critical point of f.

Proposition. [RB, Ferreira, Santos, Souza, 2024]

Let g be σ-strongly (geodesically) convex. Then

f(p(k+1)) ≤ f(p(k))− σ

2
d2(p(k),p(k+1))

and
∞∑
k=0

d2(p(k),p(k+1)) <∞, so in particular lim
k→∞

d(p(k),p(k+1)) = 0.

N
or

ge
s

te
kn

isk
-n

at
ur

vi
te

ns
ka

pe
lig

e
un

iv
er

sit
et

Software

20

Goals of the Software – Why Julia?
Goals.
▶ abstract definition of manifolds and optimization thereon
⇒ implement abstract solvers on a generic manifold
▶ well-documented and well-tested
▶ fast.
⇒ “Run your favourite solver on your favourite manifold”.

Why Julia? julialang.org
▶ high-level language, properly typed
▶ multiple dispatch, e. g. *(::AbstractMatrix, ::AbstractMatrix)
▶ just-in-time compilation, solves two-language problem
⇒ “nice to write” and as fast as C/C++

▶ I like the community

https://julialang.org

21

ManifoldsBase.jl – Motivation
Goal. Provide a generic interface to manifolds for
▶ defining own (new) manifolds
▶ implementing generic algorithms on an arbitrary manifold M

A Manifold. a Riemannian manifold is a subtype of AbstractManifold{F}
▶ F ∈ {R,C,H}: field the manifold is build on
▶ stores all “general” information, (mainly) the manifold dimension
▶ example (form Manifolds.jl): M = Sphere(2)

Points and Tangent vectors.
▶ by default not typed, often <:AbstractArray
▶ we provide <:AbstractManifoldPoint and <:TVector for more

advanced ones

22

Manifolds.jl

[Axen, Baran, RB, Rzecki, 2023]

Goal. Provide a library of Riemannian manifolds,
that is efficiently implemented and well-documented

Meta. generic implementations for Mn×m, M1 ×M2,
vector- and tangent-bundles, esp. TpM, or Lie groups

Library. Implemented functions for
▶ Circle, Sphere, Torus, Hyperbolic, Projective Spaces, Hamiltonian
▶ (generalized, symplectic) Stiefel, Rotations
▶ (generalized, symplectic) Grassmann, fixed rank matrices
▶ Symmetric Positive Definite matrices, with fixed determinant
▶ (several) Multinomial, (skew-)symmetric, and symplectic matrices
▶ Tucker & Oblique manifold, Kendall’s Shape space
▶ probability simplex, orthogonal and unitary matrices, …

23

Manopt.jl
Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s,
implement initialize_solver!(p, s) and step_solver!(p, s, i)
⇒ an algorithm in the Manopt.jl interface

Highlevel interfaces like gradient_descent(M, f, grad_f)
on any manifold M from Manifolds.jl.
All provide debug output, recording, cache & counting capabilities,

as well as a library of step sizes and stopping criteria.

Manopt family.

manoptjl.org
[RB, 2022]

manopt.org
[Boumal, Mishra, Absil, Sepulchre, 2014]

pymanopt.org
[Townsend, Koep, Weichwald, 2016]

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org

24

List of Algorithms in Manopt.jl
Derivatve-Free Nelder-Mead, Particle Swarm, CMA-ES, MADS
Subgradient-based Subgradient Method, Convex Bundle Method,

Proximal Bundle Method
Gradient-based Gradient Descent, Conjugate Gradient, Stochastic,

Momentum, Nesterov, Averaged; Quasi-Newton with
(L-)BFGS, DFP, Broyden, SR1,...; Levenberg-Marquard

Hessian-based Trust Regions, Adaptive Regularized Cubics (ARC)
splitting Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point,

Proximal Gradient
constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe,

Projected Gradient, Interior Point Newton
nonconvex Difference of Convex Algorithm, DCPPA

manoptjl.org/stable/solvers/

https://www.manoptjl.org/stable/solvers/

N
or

ge
s

te
kn

isk
-n

at
ur

vi
te

ns
ka

pe
lig

e
un

iv
er

sit
et

A Numerical Example

25

The Difference of Convex Algorithm in Manopt.jl
The algorithm is implemented and released in Julia using Manopt.jl1.
It can be used with any manifold from Manifolds.jl

A solver call looks like
q = difference_of_convex_algorithm(M, f, g, ∂h, p0)

where one has to implement f(M, p), g(M, p), and ∂h(M, p).

▶ a sub problem is generated if keyword grad_g= is set
▶ an efficient version of its cost and gradient is provided
▶ you can specify the sub-solver using sub_state=

to also set up the specific parameters of your favourite algorithm

1see https://manoptjl.org/stable/solvers/difference of convex/

https://manoptjl.org/stable/solvers/difference_of_convex/

26

Rosenbrock and First Order Methods
Problem. We consider the classical Rosenbrock example2

argmin
x∈R2

a
(
x21 − x2

)2
+
(
x1 − b

)2
,

where a,b > 0, usually b = 1 and a≫ b, here: a = 2 · 105.

Known Minimizer x∗ =
(
b
b2
)

with cost f(x∗) = 0.

Goal. Compare first-order methods, e. g. using the (Euclidean) gradient

∇f(x) =
(
4a(x21 − x2)
−2a(x21 − x2)

)
+

(
2(x1 − b)

0

)

2available online in ManoptExamples.jl

https://juliamanifolds.github.io/ManoptExamples.jl/stable/examples/Difference-of-Convex-Rosenbrock/

27

A “Rosenbrock-Metric” on R2

In our Riemannian framework, we can introduce a new metric on R2 as

Gp :=

(
1+ 4p21 −2p1
−2p1 1

)
, with inverse G−1p =

(
1 2p1
2p1 1+ 4p21

)
.

We obtain (X, Y)p = XTGpY

The exponential and logarithmic map are given as

expp(X) =
(

p1 + X1
p2 + X2 + X21

)
, logp(q) =

(
q1 − p1

q2 − p2 − (q1 − p1)2
)
.

Manifolds.jl:
Implement these functions on MetricManifold(R^2, RosenbrockMetric()).

28

The Riemannian Gradient w.r.t. the new Metric

Let f :M→ R. Given the Euclidean gradient ∇f(p), its Riemannian
gradient grad f :M→ TM is given by

grad f(p) = G−1p ∇f(p).

While we could implement this denoting ∇f(p) =
(
f ′1(p) f ′2(p)

)T using〈
grad f(q), logq p

〉
q
= (p1 − q1)f

′

1(q) + (p2 − q2 − (p1 − q1)2)f
′

2(q),

but it is automatically done in Manopt.jl.

29

The Experiment Setup
Algorithms. We now compare

1. The Euclidean gradient descent algorithm on R2,
2. The Riemannian gradient descent algorithm on M,
3. The Difference of Convex Algorithm on R2,
4. The Difference of Convex Algorithm on M.

For DCA third we split f into f(x) = g(x)− h(x) with

g(x) = a
(
x21 − x2

)2
+ 2

(
x1 − b

)2 and h(x) =
(
x1 − b

)2
.

Initial point. p0 = 1
10

(
1
2

)
with cost f(p0) ≈ 7220.81.

Stopping Criterion.
dM(p(k),p(k−1)) < 10−16 or ∥grad f(p(k))∥p < 10−16.

30

Results

100 101 102 103 104 105 106 107
10−16

10−10

10−4

102

Iter. k

f(p(k))
Euclidean GD Euclidan DCA

Riemannian GD Riemannian DCA

Algorithm Runtime (sec.) # Iterations
Euclidean GD 305.567 53 073 227
Euclidean DCA 58.268 50 588
Riemannian GD 18.894 2 454 017
Riemannian DCA 7.704 2 459

31

Summary

Nonsmooth optimization on manifolds appears in several applications.
▶ many algorithms can be generalized
▶ many properties carry over, like convergence results
▶ Fenchel duality can be generalized [Schiela, Herzog, RB, 2024]

▶ Manifolds.jl & Manopt.jl [RB, 2022; Axen, Baran, RB, Rzecki, 2023]

▶ numerical examples available in ManoptExamples.jl

▶ Next. LieGroups.jl

ronnybergmann.net/talks/2025-Nonsmooth-Optimization-Manifolds-Houston.pdf32

Selected References
Axen, S. D.; M. Baran; RB; K. Rzecki (2023). “Manifolds.jl: An Extensible Julia
Framework for Data Analysis on Manifolds”. ACM Transactions on Mathematical
Software 49.4. doi: 10.1145/3618296.
RB (2022). “Manopt.jl: Optimization on Manifolds in Julia”. Journal of Open Source
Software 7.70, p. 3866. doi: 10.21105/joss.03866.

RB; O. P. Ferreira; E. M. Santos; J. C. d. O. Souza (2024). “The difference of convex
algorithm on Hadamard manifolds”. Journal of Optimization Theory and Applications.
doi: 10.1007/s10957-024-02392-8.
RB; H. Jasa; P. John; M. Pfeffer (2025a). The Intrinsic Riemannian Proximal
Gradient Method for Nonconvex Optimization. arXiv: 2506.09775.

— (2025b). The Intrinsic Riemannian Proximal Gradient Method for Convex
Optimization. arXiv: 2507.16055.

RB; J. Persch; G. Steidl (2016). “A parallel Douglas Rachford algorithm for
minimizing ROF-like functionals on images with values in symmetric Hadamard
manifolds”. SIAM Journal on Imaging Sciences 9.4, pp. 901–937. doi:
10.1137/15M1052858.

https://ronnybergmann.net/talks/2025-Nonsmooth-Optimization-Manifolds-Houston.pdf
https://doi.org/10.1145/3618296
https://doi.org/10.21105/joss.03866
https://doi.org/10.1007/s10957-024-02392-8
https://arxiv.org/abs/2506.09775
https://arxiv.org/abs/2507.16055
https://doi.org/10.1137/15M1052858

	Software
	A Numerical Example

