
N
or

ge
s

te
kn

isk
-n

at
ur

vi
te

ns
ka

pe
lig

e
un

iv
er

sit
et

Groups and smooth geometry
using LieGroups.jl
Ronny Bergmann

kellertuer

NTNU, Trondheim, Norway.

JuliaCon 2025,
Pittsburg, July 24, 2025.

2

Motivation
In a lot of applications, data or variables like for example
▶ rotation matrices,
▶ invertible matrices,
▶ rigid body motions: translation & rotation,

and many more, are non-Euclidean: For two rotation matrices
R1,R2 ∈ R3×3 their sum R1 + R2 is not a rotation matrix.
But. All 3 examples share a lot of structure
▶ they are smooth: elements have “a neighbourhood on a hyper

surface”
▶ they have a group operation

Goals.
▶ an interface to define and work with these structures
▶ a library of these “groups with smoothness”

3

JuliaManifolds: Nonlinear data in Julia
Nov 2016 Manopt.jl

optimization algorithms on Riemannian manifolds
Jun 2019 first release Manopt.jl v0.1

same day: start of Manifolds.jl
to work with Riemannian manifolds in Julia

Nov 2019 ManifoldsBase.jl
an interface to work on and define
Riemannian manifolds.

Mar 2020 Manifolds.jl v0.1
which already contained a GroupManifold

Oct 2024 LieGroups.jl (kudos yuehhua)
an interface for and a library of Lie groups

“Manifolds in numerical computations with JuliaManifolds”
by Mateusz Baran, here @ JuliaCon 2025.

4

What is a manifold?
Informally. A manifold M is a set that locally “looks like” some Rd

“around” every point. d is called the manifold dimension.

Example 1. Our earth, or a sphere, S2 =
{
p ∈ R3 | ‖p‖ = 1

}
locally

looks like R2, just take an atlas. But this works only locally.

Example 2. The set of 2D rotation matrices Rα =

(
cosα sinα
− sinα cosα

)
locally looks like a line, but (again) not globally, since R0 = R2π.

Example 3. The set of 3D rotation matrices R ∈ R3×3, i. e.
with RTR = I3 and det(R) = 1, is locally isomorphic to R3.

one could use Euler angles, but they have their disadvantages.

5

From Manifolds to Lie groups
An operation · : M×M → M is called (abelian) group operation if

1. a · b ∈ M for all a,b ∈ M
2. (a · b) · c = a · (b · c) for all a,b, c ∈ M
3. the exists a neutral element e ∈ M,

such that e · a = a · e = a for all a ∈ M
4. For a ∈ M there exists an inverse element a−1 s. t. a · a−1 = e
5. the group is abelian if a · b = b · a

If both the group operation · and the map a 7→ a−1 are smooth,
then the pair G = (M, ·) is called a Lie group.

Often a,b ∈ M ⊂ Rn×n are matrices and · is the matrix multiplication
a,b have to be invertible!

6

A short history
1823 Niels Henrik Abel (1802–1829)

introduces group theory to study
the solutions of algebraic equations

1854 Bernhard Riemann (1826–1866)
introduces differential geometry, especially
Riemannian manifolds, to study
intrinsic properties of surfaces

1870 Marius Sophus Lie (1842–1899)
introduces Lie groups to study
symmetries in differential equations

7

Tangent Spaces & the Lie Algebra

For a point g ∈ G take
▶ a smooth curve c(t) “running through” c(0) = g
▶ its derivative ċ(0): a “looking direction at” g
▶ collect all derivatives having the same value as X = [ċ(0)]

X is called a tangent vector and collecting all possible such X: TgG is the
tangent space at g.

Special case.
At the identity g = e we get g := TeG the so-called Lie algebra.

8

Technical Detour: Riemannian Manifolds

▶ Every tangent space is a d-dimensional vector space.
We define an inner product (“measure angles”) 〈·, ·〉g for each TgM
measure lengths using the induced norm ‖X‖ =

√
〈X, X〉g

When 〈·, ·〉g varries smoothly in g
a Riemannian metric

A manifold M together with such a metric is called Riemannian manifold.

A bit technical, because we have to remember/store/implement
a whole family of inner products.

9

First code in Manifolds.jl
The set of n-by-n rotation matrices is a manifold
called (simply) Rotations(n) in Manifolds.jl.
using Manifolds, LinearAlgebra

M = Rotations(3)
d = manifold_dimension(M) # returns 3
g = rand(M); is_point(M, g) # is true

Lie group checks: the old way
e = one(g) # neutral: the identity matrix
is_point(M, e) # true
is_point(M, g+e) # false
is_point(M, g*e) # true
X = zero_vector(M,e) # from the TeG (the Lie algebra)
inner(M, e, X, X). # norm(M, e, X)^2 -> yields zero
Y = rand(M; vector_at=e) # a random vector from TeG.

10

First code in LieGroups.jl
The rotation matrices together with matrix multiplication
are called the special orthogonal group SO(n).
using LieGroups, LinearAlgebra

G = SpecialOrthogonalGroup(3)
d = manifold_dimension(G) # returns 3 as before
g = rand(G); is_point(G, g) # works as before

Lie group checks: the new way
e = identity_element(G) # new name: the identity
is_point(G, e) # true
h = compose(G, g, e) # the group operation
is_point(G, h) # ...and we stay in G of course
g = LieAlgebra(G) # does not explicitly store e
X = zero_vector(g) #
inner(g, X, rand(g)) # inner on g.

11

Technical Detour: Left-invariant vector fields
For the left group operation λg(h) = g · h, consider its
differential Dλg(h) : TgG → TghG. diff_left_compose(G,g,h,X)

A vector field V : G → TG, g 7→ V(g) ∈ TgG is called left-invariant if

Dλg(h)[V(h)] = V(λg(h)) holds for all g,h ∈ G

Knowing V at one point V(e) = X ∈ TeG, we know it anywhere.

Example 1.
On G = (R,+) we have λg(h) = g+ h Dλg(h)[X] = X.

yields constant vector fields V(g) = X; we can “attach X anywhere”.

Example 2.
On G = (SO(n), ·) we have λg(h) = gh Dλg(h)[X] = gX.

For V(e) = X we have V(g) = gX ∈ TgG

12

Model (nearly) everything on the Lie algebra g

We saw
▶ X ∈ g implies Dλg(e)[X] ∈ TgG

Knowing X and g is enough, since for Y = gX ∈ TgG we have
g−1Y = X ∈ g

Given a metric 〈·, ·〉 on g
Use this idea to introduce the so-called left invariant metric

〈Y, Z〉g = 〈g−1Y, g−1Z〉 for X, Y ∈ TgG

is a smoothly varying metric on G.

even easier: just store elements X from g to avoid the group op. with g−1

13

The Lie group exponential
Motivation. Generalise the idea to take a tangent vector (“direction”)
X ∈ g back (“down to”) the Lie group. Or: “walk that way”.

Definition.(Hilgert, Neeb, 2012, Def. 9.2.2) exp(G,X)
The (Lie group) exponential function expG : g → G is defined as

expG(X) = γX(1),

where γX is the unique curve that solves the initial value problem

γ̇(t) = γ(t)X, γX(0) = e, γ̇X(0) = X.

Example 1. On G = (R,+) we obtain expG(X) = X

Example 2. On the circle we obtain the complex exponential X 7→ eiX

Example 3. On G = (SO(n), ·) we obtain the matrix exponential eX

14

Be careful with the name exp
There are several things called the exponential
Lie group (function) exp(G,X), exp!(G,g,X)

the map expG : g → G from the last page,
Idea: “Start walking” from e

Lie group (map) exp(G,g,X), exp!(G,h,g,X)
Interpret X ∈ g as gX ∈ TgG and compute (due to chain rule)
expg(X) = g expG(X)
Idea: “Start walking” from g

Riemannian manifold (map) exp(M,g,X), exp!(M,h,g,X)
On the M=base_manifold(G) with X ∈ TgM:
follow the geodesic w. r t. the Riemannian metric.
Idea: Follow the “straightest” curve from g in direction X.

…and of course the “classical” exponential and matrix exponential.

15

Example I (cont.): Special orthogonal group SO(3)
using LieGroups, LinearAlgebra, Rotations
SO3 = SpecialOrthogonalGroup(3) # 3d Rotations w/matrix mult.
g = [1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]
h = RotZ(π/4) # 45 degrees in XY plane

is_point.(Ref(SO3), [g,h]) # returns [true, true]
k = compose(SO3, g, h)
compose!(SO3, k, inv(SO3, g), k) # in-place of k; avoid allocs
isapprox(SO3, k, h) # inverts the first compose

so3 = LieAlgebra(SO3); X = [0 0.3 0; -0.3 0 0; 0 0 0]
is_point(so3, X) # same as is_vector(SO3,e,X)
l = exp(SO3, X); is_point(SO3, l) # so3 -> SO3
Y = log(SO3, l); isapprox(so3,X,Y)# ...and back
is_point(so3, X+Y) # so3 is a vector space

16

Group actions and (semidirect) product Lie groups
A group action describes how a Lie group G acts on some manifold M:

σ : G×M → M, q = σ(g,p) ∈ M

Example. For G = SO(3), M = R3 we have σ(R,p) = Rp.
This group action describes how vectors in R3 are actually rotated.
Product Lie groups. G×H
A (direct) product group (G, ⋆)× (H, �) works on tuples elementwise

(g1,h1) · (g2,h2) = (g1 ⋆ g2,h1 � h2)

Semidirect product Lie groups. G⋉H
On a (left) semidirect product group (G, ⋆)⋉ (H, �) the first (left) group
acts on the second

(g1,h1) · (g2,h2) = (g1 ⋆ g2,h1 � σg1(h2))

(in ⋉ = ⋉σ the action is implicit; analogously: a right semidirect product ⋊)

17

Example II: Special Euclidean group SE(n)
Rigid body motions SE(3) = (SO(3), ·)⋉ (R3,+). Group operation:
(R, t) ◦ (S,u) = (RS, t+ Ru).1
using LieGroups, LinearAlgebra, RecursiveArrayTools, Rotations
SE3 = SpecialEuclideanGroup(3) # or use SO3 ⋉ T3 from before

g = ArrayPartition(RotZ(π/3)*RotY(π/4), [1.0, 2.0])
h = ArrayPartition(RotX(π/6), [0.0, 1.0])
gh = compose(SE3, g, h) #
e = identity_element(SE3, typeof(g)) # type: representation.

default: homog. coord.

X = log(SE3, gh) # inverse: gh = exp(SE3,X)
se3 = LieAlgebra(SE3)
c = vee(se3, X) # repr. as vector, coeffs in a basis of se(3)

1obtained also from default matrix product in homogeneous coordinates.

18

Checks along the way: ValidationLieGroup
▶ default: neither input nor output are checked

hard to see “where things go wrong”
use ValidationLieGroup(G)

Ansatz. Wrap the Lie group G as ValidationLieGroup(G)
every function call is “enhanced” by checks is_point/is_vector on

corresponding inputs/outputs

Keyword arguments.
▶ error=:error how to “report” errors in the checks

change to :warn or :info
▶ ignore_contexts=[:input] to e. g. not validate inputs
▶ ignore_functions=Dict(exp => :All) to exclude certain

function (& their contexts) from validation

19

Functions available in LieGroups.jl
.

Lie group G
▶ adjoint(G,g,X)
▶ compose(G,g,h) and inv(G,g)
▶ conjugate(G,g,h)
▶ exp(G,g,X), exp(G,X)
▶ log(G,g,h), log(G,g)
▶ inv_left_compose(G,g,h),

inv_right_compose(G,g,h)
▶ differentials of conjugate,

inv, compose (left & right arg)
▶ jacobian_conjugate(G, g, h)
▶ identity_element(G)

Lie algebra g

▶ base_lie_group(g)
▶ lie_bracket(g, X, Y)
▶ get_coordinates(g,X) (vee)
▶ get_vector(g,c) (hat)
▶ inner(g,X,Y)
▶ zero_vector(g)

all also in-place:
f!(G, ret, args...)

suitable ones automatically
“pass through” to Manifolds.jl

20

Notable differences to GroupManifolds
In a nutshell.
GroupManifolds equipped a manifolds with a group operation
LieGroups use a manifold internally

On LieGroups
▶ the Lie group exponential is more prominent

previously called exp_lie / exp_inv
▶ naming was simplified and unified
▶ LieAlgebra its own type / vector space

nearly no need to allocate an identity
▶ more efficient (power/product) Lie groups
▶ a generic implementation of semidirect product Lie groups
▶ more consistent default: left invariant vector fields

see tutorials/transition/ for a complete list.

https://juliamanifolds.github.io/LieGroups.jl/stable/tutorials/transition/

21

Available Lie groups
Meta Lie groups. To build Lie groups from existing ones
▶ PowerLieGroup(G, n) or G^n
▶ ProductLieGroup(G1, G2) or G1 × G2
▶ LeftSemidirectProductGroup(G1, G2) or G1 ⋉ G2
▶ RightSemidirectProductGroup(G1, G2) or G1 ⋊ G2

Lie groups.
▶ CircleGroup(), 3 variants: R, embedded in C or R2

▶ GeneralLinearGroup(n; field=R) and HeisenbergGroup(n)
▶ OrthogonalGroup(n) and UnitaryGroup(n)
▶ SpecialEuclideanGroup(n; variant=:left) or :right
▶ SpecialLinearGroup(n; field=R) or C
▶ SpecialOrthogonalGroup(n) and SpecialUnitaryGroup(n)
▶ SymplecticGroup(n) and TranslationGroup(n; field=R)

22

Summary
We gave a short introduction to Lie Groups and LieGroups.jl.
The package provides
Interfaces to work with and define
▶ Lie groups & group operations
▶ Lie algebras
▶ group actions

directly work on abstract Lie groups or define your own

A library of Lie groups
▶ well-documented with formulae and literature
▶ based on Manifolds.jl
▶ efficiently implemented

23

Links & References
LieGroups.jl documentation: juliamanifolds.github.io/LieGroups.jl/
References.

Axen, S. D.; M. Baran; RB; K. Rzecki (2023). “Manifolds.jl: An Extensible
Julia Framework for Data Analysis on Manifolds”. ACM Transactions on
Mathematical Software 49.4. doi: 10.1145/3618296.
RB (2022). “Manopt.jl: Optimization on manifolds in Julia”. Journal of
Open Source Software 7.70, p. 3866. doi: 10.21105/joss.03866.
Hilgert, J.; K.-H. Neeb (2012). Structure and Geometry of Lie Groups.
Springer Monographs in Mathematics. doi:
10.1007/978-0-387-84794-8.

…and special thanks to Michael Goerz for
▶ DocumenterInterLinks.jl
▶ DocumenterCitations.jl

ronnybergmann.net/talks/2025-LieGroups-JuliaCon.pdf or

https://juliamanifolds.github.io/LieGroups.jl/
https://doi.org/10.1145/3618296
https://doi.org/10.21105/joss.03866
https://doi.org/10.1007/978-0-387-84794-8
https://juliadocs.org/DocumenterInterLinks.jl/stable/
https://juliadocs.org/DocumenterCitations.jl/stable/
https://ronnybergmann.net/talks/2025-LieGroups-JuliaCon.pdf

23

Links & References
LieGroups.jl documentation: juliamanifolds.github.io/LieGroups.jl/
References.

Axen, S. D.; M. Baran; RB; K. Rzecki (2023). “Manifolds.jl: An Extensible
Julia Framework for Data Analysis on Manifolds”. ACM Transactions on
Mathematical Software 49.4. doi: 10.1145/3618296.
RB (2022). “Manopt.jl: Optimization on manifolds in Julia”. Journal of
Open Source Software 7.70, p. 3866. doi: 10.21105/joss.03866.
Hilgert, J.; K.-H. Neeb (2012). Structure and Geometry of Lie Groups.
Springer Monographs in Mathematics. doi:
10.1007/978-0-387-84794-8.

…and special thanks to Michael Goerz for
▶ DocumenterInterLinks.jl
▶ DocumenterCitations.jl

ronnybergmann.net/talks/2025-LieGroups-JuliaCon.pdf or

https://juliamanifolds.github.io/LieGroups.jl/
https://doi.org/10.1145/3618296
https://doi.org/10.21105/joss.03866
https://doi.org/10.1007/978-0-387-84794-8
https://juliadocs.org/DocumenterInterLinks.jl/stable/
https://juliadocs.org/DocumenterCitations.jl/stable/
https://ronnybergmann.net/talks/2025-LieGroups-JuliaCon.pdf

23

Links & References
LieGroups.jl documentation: juliamanifolds.github.io/LieGroups.jl/
References.

Axen, S. D.; M. Baran; RB; K. Rzecki (2023). “Manifolds.jl: An Extensible
Julia Framework for Data Analysis on Manifolds”. ACM Transactions on
Mathematical Software 49.4. doi: 10.1145/3618296.
RB (2022). “Manopt.jl: Optimization on manifolds in Julia”. Journal of
Open Source Software 7.70, p. 3866. doi: 10.21105/joss.03866.
Hilgert, J.; K.-H. Neeb (2012). Structure and Geometry of Lie Groups.
Springer Monographs in Mathematics. doi:
10.1007/978-0-387-84794-8.

…and special thanks to Michael Goerz for
▶ DocumenterInterLinks.jl
▶ DocumenterCitations.jl

ronnybergmann.net/talks/2025-LieGroups-JuliaCon.pdf or

https://juliamanifolds.github.io/LieGroups.jl/
https://doi.org/10.1145/3618296
https://doi.org/10.21105/joss.03866
https://doi.org/10.1007/978-0-387-84794-8
https://juliadocs.org/DocumenterInterLinks.jl/stable/
https://juliadocs.org/DocumenterCitations.jl/stable/
https://ronnybergmann.net/talks/2025-LieGroups-JuliaCon.pdf

