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Motivation
In a lot of applications, data or variables like for example
P rotation matrices,
» invertible matrices,
» rigid body motions: translation & rotation,

and many more, are non-Euclidean: For two rotation matrices
R1,R, € R3*3 their sum Ry + R, is not a rotation matrix.

But. All 3 examples share a lot of structure

P they are smooth: elements have “a neighbourhood on a hyper
surface”

» they have a group operation

A8 Goals.
» an interface to define and work with these structures

» a library of these “groups with smoothness”



JuliaManifolds: Nonlinear data in Julia
Nov 2016 Manopt.jl
optimization algorithms on Riemannian manifolds
Jun 2019 first release Manopt.jl v0.1
3 same day: start of Manifolds.jl
to work with Riemannian manifolds in Julia
Nov 2019 ManifoldsBase.jl
an interface to work on and define
Riemannian manifolds.
Mar 2020 Manifolds.jl vO.1
which already contained a GroupManifold
Oct 2024 LieGroups.jl (kudos yuehhua)
an interface for and a library of Lie groups

&M “Manifolds in numerical computations with JuliaManifolds”
by Mateusz Baran, here @ JuliaCon 2025.



What is a manifold?

Informally. A manifold M is a set that locally “looks like” some R?
“around” every point. d is called the manifold dimension.

Example 1. Our earth, or a sphere, S? = {p € R? | ||p|| = 1} locally
looks like R?, just take an atlas. But this works only locally.

. . cosa  sina
Example 2. The set of 2D rotation matrices R, = )

—sina  cos«
locally looks like a line, but (again) not globally, since Ry = R

Example 3. The set of 3D rotation matrices R € R3*3, i.e.
with RTR = I3 and det(R) = 1, is locally isomorphic to R3.
one could use Euler angles, but they have their disadvantages.




From Manifolds to Lie groups

An operation -: M x M — M is called (abelian) group operation if
l.a-be Mforalla,b e M
2. (a-b)-c=a-(b-c)forallab,ce M
3. the exists a neutral element € € M,
suchthate-a=a-e=aqaforallae M
4. For a € M there exists an inverse element ™' s.t. a-a~ ' =e
5. the group is abelianifa-b=»b-a

If both the group operation - and the map a — a~' are smooth,
then the pair G = (M, ) is called a Lie group.

Often a,b € M C R™" are matrices and - is the matrix multiplication
® a, b have to be invertible!




A short history

1823

1854

1870

Niels Henrik Abel (1802-1829)
introduces group theory to study
the solutions of algebraic equations

Bernhard Riemann (1826-1866)
introduces differential geometry, especially
Riemannian manifolds, to study

intrinsic properties of surfaces

Marius Sophus Lie (1842-1899)
introduces Lie groups to study
symmetries in differential equations




Tangent Spaces & the Lie Algebra

For a point g € G take
» a smooth curve ¢(t) “running through” ¢(0) =g
» its derivative ¢(0): a “looking direction at” g
» collect all derivatives having the same value as X = [¢(0)]

Xis called a tangent vector and collecting all possible such X: T¢G is the
tangent space at 4.

Special case.
At the identity g = e we get g := T.G the so-called Lie algebra.




Technical Detour: Riemannian Manifolds

» Every tangent space is a d-dimensional vector space.
@ We define an inner product (“measure angles”) (-, )¢ for each TgM

@ measure lengths using the induced norm || X|| = \/(X; X)g
/\ When (-, )¢ varries smoothly in g
@ a Riemannian metric

A manifold M together with such a metric is called Riemannian manifold.

A bit technical, because we have to remember/store/implement
a whole family of inner products.




First code in Manifolds. jl

The set of n-by-n rotation matrices is a manifold
called (simply) Rotations(n) in Manifolds. j1.

using Manifolds, LinearAlgebra

X = zero_vector(M,e) from the TeG (the Lie algebra)
inner(M, e, X, X). norm(M, e, X) 2 -> yields zero
Y = rand(M; vector_at=e) # a random vector from TeG.

M = Rotations(3)
d = manifold dimension(M)  # returns 3
g = rand(M); is_point(M, g) # is true
# Lie group checks: the old way
e = one(g) # neutral: the identity matriz
is_point(M, e) # true
is_point(M, g+e) # false
is_point (M, g*e) # true
#
#




First code in LieGroups. jl

The rotation matrices together with matrix multiplication

are called the special orthogonal group SO(n).

using LieGroups, LinearAlgebra

G = SpecialOrthogonalGroup(3)
d = manifold dimension(G)

g = rand(G); is_point(G, g)

e = identity_element (G)

is_point (G, e)
compose(G, g, e)
is_point(G, h)
LieAlgebra(G)
zero_vector(g)
inner(g, X, rand(g))

=y
Il
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returns 3 as before

works as before

Lie group checks: the new way
new name: the identity

true

the group operation

...and we stay in G of course
does not explicitly store e

inner on ¢.



B Technical Detour: Left-invariant vector fields
For the left group operation Ag(h) = g - h, consider its
differential D)\g(h): TG — TghG. diff_left_compose(G,g,h,X)

A vector field V: G — TG, g~ V(g) € TG is called left-invariant if
DAg(M)[V(h)] = V(Ag(h)) holds for all g .he G

@ Knowing V at one point V(e) = X € TG, we know it anywhere.

Example 1.
On G = (R,+) we have \g(h) =g+h @ DX\(h)X] =X
/\ yields constant vector fields V(g) = X; we can “attach X anywhere”.

Example 2.
On G = (SO(n),-) we have \;(h) =gh @ DXg(h)[X] = gX.
/\ For V(e) = X we have V(g) = gX € T,G




Model (nearly) everything on the Lie algebra g

We saw
> X € g implies DAg(e)[X] € T,G

@ Knowing X and g is enough, since for Y = gX € T;G we have
g'V=Xeg

Given a metric (-,-) on g
Use this idea to introduce the so-called left invariant metric

V.2, = (g 'V.g'2) for X,YET,G

is a smoothly varying metric on G.

even easier: just store elements X from g to avoid the group op. with g




B The Lie group exponential

Motivation. Generalise the idea to take a tangent vector (“direction”)
X € g back ("down to") the Lie group. Or: “walk that way".

Definition.(Hilgert, Neeb, 2012, Def. 9.2.2) exp(G,X)
The (Lie group) exponential function exps: g — G is defined as

expg(X) = (1),
where 7y is the unique curve that solves the initial value problem
) =2(0X,  w(0)=e, n(0)=X
Example 1. On G = (R, +) we obtain expg(X) = X

Example 2. On the circle we obtain the complex exponential X — e*

Example 3. On G = (SO(n), -) we obtain the matrix exponential e*



B Be careful with the name exp

There are several things called the exponential

Lie group (function) exp(G,X), exp!(G,g,X)
the map exps: g — G from the last page,
Idea: “Start walking” from e

Lie group (map) exp(G,g,X), exp!(G,h,g,X)
Interpret X € g as gX € TgG and compute (due to chain rule)

expg(X) = g exps(X)
Idea: “Start walking” from g

Riemannian manifold (map) exp(M,g,X), exp!(M,h,g,X)
On the M=base_manifold(G) with X € Ty M:
follow the geodesic w. rt. the Riemannian metric.
Idea: Follow the “straightest” curve from g in direction X.

..and of course the “classical” exponential and matrix exponential.



Example | (cont.): Special orthogonal group SO(3)

using LieGroups, LinearAlgebra, Rotations

S03 = SpecialOrthogonalGroup(3) # 3d Rotations w/matriz mult.
g=1[1.00.00.0; 0.0 1.0 0.0; 0.0 0.0 1.0]

h = RotZ(m/4) # 45 degrees in XY plane

is_point. (Ref(S03), [g,hl) # returns [true, true]

k = compose(S03, g, h)

compose! (803, k, inv(S03, g), k) # in-place of k; avoid allocs
isapprox(S03, k, h) # tnverts the first compose

so3 = LieAlgebra(S03); X = [0 0.3 0; -0.3 0 0; 0 0 0]
is_point(so3, X) # same as is_wector(S03,e,X)
1 = exp(S03, X); is_point(S03, 1) # so3 -> SO3

Y = log(S03, 1); isapprox(so3,X,Y)# ...and back

is_point(so3, X+Y) # so3 is a wvector space




Group actions and (semidirect) product Lie groups
A group action describes how a Lie group G acts on some manifold M:

c:GxXM— M, q=o(g,p)eM

Example. For G = SO(3), M = R3 we have o(R,p) = Rp.
This group action describes how vectors in R> are actually rotated.

Product Lie groups. GxH
A (direct) product group (G, ) x (H, <) works on tuples elementwise

(81,M) - (82, h2) = (81 * 82, 1 © h2)
Semidirect product Lie groups. GXH
On a (left) semidirect product group (G, *) x (H, <) the first (left) group
acts on the second

(&1,h1) - (82,h2) = (81 %82, h1 0 0g,(h2))

(in x = X, the action is implicit; analogously: a right semidirect product x)




B Example II: Special Euclidean group SE(n)
Rigid body motions SE(3) = (SO(3), ) x (R3,+). Group operation:
(R,t) o (S,u) = (RS, t + Ru).
using LieGroups, LinearAlgebra, RecursiveArrayTools, Rotations
SE3 = SpecialEuclideanGroup(3) # or use SO03 x T3 from before

NTNU

g = ArrayPartition(RotZ(w/3)*RotY(w/4), [1.0, 2.0])

h = ArrayPartition(RotX(w/6), [0.0, 1.0])

gh = compose(SE3, g, h) #

e = identity_element (SE3, typeof(g)) # type: representation.
# default: homog. coord.

X = 1log(SE3, gh) # inverse: gh = exp(SE3,X)
se3 = LieAlgebra(SE3)
c = vee(se3, X) # repr. as vector, coeffs in a basis of se(3)

Lobtained also from default matrix product in homogeneous coordinates.



Checks along the way: ValidationLieGroup
» default: neither input nor output are checked
/\ hard to see “where things go wrong”
use ValidationLieGroup(G)

Ansatz. Wrap the Lie group G as ValidationLieGroup(G)
@ every function call is “enhanced” by checks is_point/is_vector on
corresponding inputs/outputs

Keyword arguments.

» error=:error how to “report” errors in the checks
change to :warn or :info

» ignore_contexts=[:input] to e.g. not validate inputs

» ignore_functions=Dict(exp => :All) to exclude certain
function (& their contexts) from validation




Functions available in LieGroups. jl

vvVvyVvyyvyy

v

v

Lie group G
adjoint(G,g,X)
compose(G,g,h) and inv(G,g)
conjugate(G,g,h)
exp(G,g,X), exp(G,X)
log(G,g,h), log(G,g)
inv_left_compose(G,g,h),
inv_right_compose(G,g,h)
differentials of conjugate,
inv, compose (left & right arg)

jacobian_conjugate(G, g, h)
identity_element (G)

vvyVvyvyyvYyy

Lie algebra g
base_lie_group(g)
lie bracket(g, X, Y)
get_coordinates(g,X) (vee)
get_vector(g,c) (hat)
inner(g,X,Y)

zero_vector(g)

all also in-place:
f1(G, ret, args...)

suitable ones automatically
“pass through” to Manifolds. jl



Notable differences to GroupManifolds

In a nutshell.
GroupManifolds equipped a manifolds with a group operation
LieGroups use a manifold internally

On LieGroups

» the Lie group exponential is more prominent
previously called exp_lie / exp_inv

» naming was simplified and unified

> LieAlgebra its own type / vector space
nearly no need to allocate an identity

» more efficient (power/product) Lie groups
» a generic implementation of semidirect product Lie groups
» more consistent default: left invariant vector fields

see tutorials/transition/ for a complete list.


https://juliamanifolds.github.io/LieGroups.jl/stable/tutorials/transition/

B Available Lie groups

Meta Lie groups. To build Lie groups from existing ones

NTNU

» PowerLieGroup(G, n) or G'n

» ProductLieGroup(Gl, G2) or G1 x G2

» LeftSemidirectProductGroup(Gl, G2) or G1 X G2

» RightSemidirectProductGroup(Gl, G2) or G1 x G2
Lie groups.

» CircleGroup(), 3 variants: R, embedded in C or R?
GeneralLinearGroup(n; field=R) and HeisenbergGroup(n)
OrthogonalGroup(n) and UnitaryGroup(n)
SpecialEuclideanGroup(n; variant=:left) or :right
SpeciallinearGroup(n; field=R) or C
SpecialOrthogonalGroup(n) and SpecialUnitaryGroup(n)

vVvvyvVvyyvyy

SymplecticGroup(n) and TranslationGroup(n; field=R)



Summary
We gave a short introduction to Lie Groups and LieGroups. jl.

The package provides

Interfaces to work with and define
» Lie groups & group operations
» Lie algebras
> group actions
@ directly work on abstract Lie groups or define your own

A library of Lie groups
» well-documented with formulae and literature
» based on Manifolds.jl
» efficiently implemented
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