

Nonlinear Fenchel conjugates

Ronny Bergmann

joint work with Anton Schiela and Roland Herzog

MathICSE seminar

Lausanne,

November 29, 2024.

The Fenchel Conjugate

The Fenchel conjugate of a function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is given by

$$f^*(\xi) \coloneqq \sup_{x \in \mathbb{R}^n} \langle \xi, x \rangle - f(x) = \sup_{x \in \mathbb{R}^n} \begin{pmatrix} \xi \\ -1 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} x \\ f(x) \end{pmatrix}$$

given ξ ∈ ℝⁿ: maximize the distance between ξ^T· and f
 can also be written in the epigraph

The Fenchel biconjugate reads

$$f^{**}(x) = (f^*)^*(x) = \sup_{\xi \in \mathbb{R}^n} \langle \xi, x \rangle - f^*(\xi).$$

Illustration of the Fenchel Conjugate

The Chambolle–Pock Algorithm

From the pair of primal-dual problems

[Chambolle, Pock, 2011]

$$\min_{x\in\mathbb{R}^n} f(x) + g(Kx), \quad K ext{ linear,} \ \max_{\xi\in\mathbb{R}^m} -f^*(-K^*\xi) - g^*(\xi)$$

we obtain for f, g proper convex, lsc the optimality conditions of a solution $(\hat{x}, \hat{\xi})$ as

$$- extsf{K}^*\hat{\xi}\in\partial f(\hat{x})$$

 $extsf{K}\hat{x}\in\partial g^*(\hat{\xi})$

The Chambolle–Pock Algorithm

From the pair of primal-dual problems

[Chambolle, Pock, 2011]

$$egin{aligned} \min_{x\in\mathbb{R}^n} f(x) + g(\mathcal{K}x), & \mathcal{K} ext{ linear,} \ \max_{\xi\in\mathbb{R}^m} & -f^*(-\mathcal{K}^*\xi) - g^*(\xi) \end{aligned}$$

we obtain for f, g proper convex, lsc the

Chambolle–Pock Algorithm. with $\sigma > 0$, $\tau > 0$, $\theta \in \mathbb{R}$ reads

$$\begin{aligned} \mathbf{x}^{(k+1)} &= \operatorname{prox}_{\sigma f} \left(\mathbf{x}^{(k)} - \sigma \mathbf{K}^* \bar{\xi}^{(k)} \right) \\ \xi^{(k+1)} &= \operatorname{prox}_{\tau g^*} \left(\xi^{(k)} + \tau \mathbf{K} \mathbf{x}^{(k+1)} \right) \\ \bar{\xi}^{(k+1)} &= \xi^{(k+1)} + \theta(\xi^{(k+1)} - \xi^{(k)}) \end{aligned}$$

NTNU

Applications of the Fenchel conjugate

The Fenchel conjugate is at the core of nonsmooth optimization

$$\underset{x \in \mathbb{R}^n}{\arg\min} \ f(x) + g(Kx)$$

as a so-called splitting method

- primal-dual (PD) algorithms
- ► PD with non-linear operators K

[Esser, Zhang, Chan, 2010; Chambolle, Pock, 2011]

[Valkonen, 2014; Mom, Langer, Sixou, 2022]

several variants: hybrid gradient, primal/dual relaxed, linearized,...

Recently this has been generalised Riemannian manifolds using

- a tangent space approach
- a tangent bundle approach
- Busemann functions

[RB, Herzog, Silva Louzeiro, Tenbrinck, Vidal-Núñez, 2021]

[Silva Louzeiro, RB, Herzog, 2022]

[de Carvalho Bento, Neto, Melo, 2023]

Formulate a framework for Fenchel conjugates on nonlinear spaces.

The Nonlinear Fenchel Conjugate

In the Fenchel conjugate we use linear test functions $\varphi(\mathbf{x}) = \langle \xi, \mathbf{x} \rangle$.

[Schiela, Herzog, RB, 2024]

Q Use use arbitrary test functions

Let \mathcal{M} be a set. We define the domain of the sum (difference) of two extended real-valued functions $f,g\in\mathcal{P}_{\pm\infty}(\mathcal{M})$ as

$$\mathcal{D}(f \pm g) \coloneqq \{x \in \mathcal{M} \mid f(x) \pm g(x) \text{ is defined}\}.$$

Definition

The nonlinear Fenchel conjugate of $f \in \mathcal{P}_{\pm\infty}(\mathcal{M})$ is defined as

$$\begin{split} f^{\circledast} \colon \mathcal{P}_{\pm\infty}(\mathcal{M}) &\to \mathbb{R}_{\pm\infty} \\ \varphi &\mapsto f^{\circledast}(\varphi) \coloneqq \sup\{\varphi(\mathbf{X}) - f(\mathbf{X}) \,|\, \mathbf{X} \in \mathcal{D}(\varphi - f)\}. \end{split}$$

A few properties

The following properties carry over to the nonlinear case, just being a bit careful with the domain of the test functions.

Suppose that $f, g \in \mathcal{P}_{\pm \infty}(\mathcal{M})$. **1.** For $\alpha > 0$ and $\beta \in \mathbb{R}$,

[Schiela, Herzog, RB, 2024]

$$\alpha f^{\circledast}(\varphi) + \beta = (\alpha f)^{\circledast}(\alpha \varphi + \beta) = (\alpha f - \beta)^{\circledast}(\alpha \varphi).$$

2. If
$$\mathcal{D}(f-\psi) = \mathcal{D}(\varphi+\psi) = \mathcal{M}$$
, then
 $(f-\psi)^{\circledast}(\varphi) = f^{\circledast}(\varphi+\psi).$

3. If $\mathcal{D}(f+g) = \mathcal{D}(\varphi + \psi) = \mathcal{M}$ and $f^{\circledast}(\varphi) + g^{\circledast}(\psi)$ is defined, then $(f+g)^{\circledast}(\varphi + \psi) \leq f^{\circledast}(\varphi) + g^{\circledast}(\psi).$

4. $\varphi \ge \psi$ and $f \le g$ implies $f^{\circledast}(\varphi) \ge g^{\circledast}(\psi)$. 5. f^{\circledast} is convex on $\mathcal{P}_{\infty}(\mathcal{M})$.

The Fenchel-Young inequality

An important inequality in the classical case is the Fenchel-Young inequality

 $f(x) + f^*(\xi) \ge \langle \xi, x \rangle$

This carries over to the nonlinear case, with a bit of carefulness as to when the sum is defined.

Theorem (Fenchel-Young inequality)

Suppose that $f, \varphi \in \mathcal{P}_{\pm \infty}(\mathcal{M})$ and $x \in \mathcal{M}$. The Fenchel-Young inequalities

- $\blacktriangleright f^{*}(\varphi) \geq \varphi(x) f(x)$
- $\blacktriangleright f(x) \ge \varphi(x) f^{\circledast}(\varphi)$
- $\blacktriangleright \varphi(\mathbf{X}) \leqslant f(\mathbf{X}) + f^{\circledast}(\varphi)$

hold, provided that the respective right-hand side is defined in $\mathbb{R}_{\pm\infty}$.

Nonlinear dual map

Motivation. In the classical case, we saw K^* the adjoint or dual map of K.

Definition

Suppose $\mathcal M$ and $\mathcal N$ are two non-empty sets and A: $\mathcal M\to \mathcal N$ is some map. The map

$$egin{aligned} \mathsf{A}^{\circledast}\colon\mathcal{P}_{\pm\infty}(\mathcal{N})& o\mathcal{P}_{\pm\infty}(\mathcal{M})\ &\psi\mapsto\mathsf{A}^{\circledast}(\psi)\coloneqq\psi\circ\mathsf{A} \end{aligned}$$

is called the dual or adjoint map of A, or the pullback by A.

- $A^{\circledast}(\alpha \psi_1 + \psi_2) = \alpha A^{\circledast}(\psi_1) + A^{\circledast}(\psi_2)$ is a homomorphism
- ▶ If A is bijective, then $(f \circ A^{-1})^{\circledast} = f^{\circledast} \circ A^{\circledast}$
- more generally: defining $(f \bullet A^{-1})(y) := \inf_{x \in A^{-1}(y)} f(x)$, we obtain $(f \bullet A^{-1})^{\circledast} = f^{\circledast} \circ A^{\circledast}$.

Motivation: The biconjugate

- approximate f its maximal convex, lsc. minorant
- linear setting: Γ-regularization, the pointwise suppremum of continuous affine functions. [Ch. I.3 Ekeland, Temam, 1999]
- $\Rightarrow f^{**} \in \mathcal{P}_{\pm\infty}(V) \text{ coincides with } \Gamma\text{-regularization of f, i.e.}$ the largest convex lsc. minorant of $f \in \mathcal{P}_{\pm\infty}(V)$
- Fenchel-Moreau:

[Thm. 13.32 Bauschke, Combettes, 2011]

 $f\in\mathcal{P}_{\infty}(\mathcal{V})$ is convex, lsc. $\Leftrightarrow f^{**}=f$.

📥 Nonlinear case.

Find a suitable subset $\mathcal{F}\subset\mathcal{P}_{\pm\infty}(\mathcal{M})$ as a generalization for affine functions.

? Can we state a biconjugation theorem as well?

NTNU

${\mathcal F}$ regularization

[Schiela, Herzog, RB, 2024]

Suppose that $\emptyset \neq \mathcal{F} \subseteq \mathcal{P}_{\pm\infty}(\mathcal{M})$ and denote by

$$\widetilde{\mathcal{F}} \coloneqq \{ \varphi + \boldsymbol{\mathsf{C}} \, | \, \varphi \in \mathcal{F}, \; \boldsymbol{\mathsf{C}} \in \mathbb{R} \}$$

the set of all φ that result from a shift of elements of \mathcal{F} .

We define the $\mathcal{F} ext{-regularization}$ of $f\in\mathcal{P}_{\pm\infty}(\mathcal{M})$ as

$$\lfloor f \rfloor_{\mathcal{F}}(\mathbf{X}) \coloneqq \sup \{ \varphi(\mathbf{X}) \mid \varphi \in \widetilde{\mathcal{F}}, \ \varphi \leqslant f \}.$$

 $[f]_{\mathcal{F}}$ is the pointwise supremum of all minorants of f taken from \mathcal{F} and its constant shifts.

In short we write:
$$\lfloor f
floor_{\mathcal{F}} = \sup \left\{ \varphi \, \middle| \, \varphi \in \widetilde{\mathcal{F}}, \; \varphi \leqslant f \right\}$$

NTNU

Some properties of $\mathcal{F}\text{-}regularization$

[Schiela, Herzog, RB, 2024]

Examples

- 1. If \mathcal{M} is a locally convex linear topological space
 - $\mathcal{F} = \mathcal{M}^*$ is its topological dual space
 - $\blacktriangleright \ \widetilde{\mathcal{F}}$ is the space of all continuous affine functions
 - $|f|_{\mathcal{M}^*}$ is the pointwise supremum over all affine minorants of f.
- **2.** Suppose that \mathcal{M} is a metric space.
 - ▶ Then lower semi-continuous functions $f \in \mathcal{P}_{\infty}(\mathcal{M})$ can be written as the pointwise supremum of continuous functions
 - For $\mathcal{F} = C(\mathcal{M})$ the set sup-cl $(\mathcal{F}) := \{ |f|_{\mathcal{F}} | f \in \mathcal{P}_{\pm \infty}(\mathcal{M}) \}$ consists of the cone of lower semi-continuous functions in $\mathcal{P}_{\infty}(\mathcal{M})$
- 3. alternate generalization: the C-conjugate [Martínez-Legaz, 2005] For a coupling function $C: \mathcal{M} \times \mathcal{N} \to \mathbb{R}_{\pm \infty}$ defined as

$$f^{c}(y) \coloneqq \sup_{x \in \mathcal{M}} c(x, y) - f(x) \text{ for } y \in \mathcal{N}.$$

Generalizes duality pairing instead of the set of test functions.

NTNU

\mathcal{F} -biconjugates

[Schiela, Herzog, RB, 2024]

▶ We denote the restriction of the conjugate $f^{\circledast} \in \mathcal{P}_{\pm\infty}(\mathcal{M})$ to \mathcal{F} by $f^{\circledast}|_{\mathcal{F}} \colon \mathcal{F} \to \mathbb{R}_{\pm\infty}$

Let the evaluation (Dirac) functions be given by

$$\delta_{\mathbf{x}} \colon \mathcal{P}_{\pm\infty}(\mathcal{M}) \to \mathbb{R}_{\pm\infty}, \qquad \varphi \mapsto \delta_{\mathbf{x}}(\varphi) \coloneqq \varphi(\mathbf{x}).$$

 \odot $\delta_x|_{\mathcal{F}}$, $\mathcal{F} \subset \mathcal{P}_{\pm \infty}(\mathcal{M})$ linear, is a linear function and continuous.

Definition

Suppose that \mathcal{F} is a linear subspace of $\mathcal{P}(\mathcal{M})$. We define the \mathcal{F} -biconjugate $f_{\mathcal{F}}^{\otimes \otimes}$ of $f \in \mathcal{P}_{\pm \infty}(\mathcal{M})$ as

$$f_{\mathcal{F}}^{\otimes \otimes} \colon \mathcal{M} \to \mathbb{R}_{\pm \infty}, \qquad \mathbf{X} \mapsto (f^{\otimes}|_{\mathcal{F}})^{\otimes}(\delta_{\mathbf{X}}).$$

Note. We employ the embedding of \mathcal{M} into the dual space of \mathcal{F} via

$$J_{\mathcal{M}\to\mathcal{F}'}\colon \mathcal{M}\to\mathcal{F}',\qquad \mathbf{X}\mapsto\delta_{\mathbf{X}}.$$

${\mathcal F}$ biconjugate theorem

Remember.

For the classical Fenchel biconjugate the set \mathcal{F} are all affine functions and $\lfloor f \rfloor_{\mathcal{F}}$ is largest convex lsc. minorant of $f \in \mathcal{P}_{\pm \infty}(V)$

Theorem

Suppose that \mathcal{F} is a linear subspace of $\mathcal{P}(\mathcal{M})$. The \mathcal{F} -biconjugate satisfies $f_{\mathcal{F}}^{\otimes \otimes} = \lfloor f \rfloor_{\mathcal{F}}$ for all $f \in \mathcal{P}_{\pm \infty}(\mathcal{M})$.

⊖ If $f = [f]_{\mathcal{F}}$, or in other words f agrees with the pointwise supremum of all minorants from \mathcal{F} , then we recover f from its \mathcal{F} -biconjugate.

Motivation: The subdifferential

With the Fenchel conjugate $f^* \colon V^* \to \mathbb{R}_{\pm\infty}$ of a proper, convex, lsc. function $f \colon V \to \mathbb{R}_{\pm\infty}$ on a vector space V we have

 $\xi \in \partial f(x)$ if and only if $x \in \partial f^*(\xi)$

↔ we can characterize both subdifferentials.

📥 Nonlinear case.

We need "more structure on \mathcal{M} " to define a subdifferential of f.

In practice/numerics we use Riemannian manifolds.

In the following we consider a manifold \mathcal{M} , that is locally homeomorphic to a Banach space \mathcal{X} , or a Banach manifold for short.

NTNU

The viscosity Fréchet Subdifferential

A function $f \in \mathcal{P}_{\pm\infty}(\mathcal{M})$ is lower semi-continuous at $x \in \mathcal{M}$ if, $\forall \varepsilon > 0 \quad \exists$ a neighbourhood \mathcal{U} of x s.t. that $f(y) \ge f(x) - \varepsilon$ for all $y \in \mathcal{U}$. We denote by $lsc_{\infty}(\mathcal{M})$ the set of all functions that are lower semi-continuous at every $x \in \mathcal{M}$.

Definition

Suppose that \mathcal{M} is a C^1 -Banach manifold, $f \in Isc_{\infty}(\mathcal{M})$, $x \in \mathcal{M}$ and $f(x) \neq +\infty$. The (viscosity) Fréchet subdifferential $\partial_F f(x)$ of f is defined as follows:

 $\partial_{\textit{F}} f(\textit{x}) \coloneqq \left\{ \varphi'(\textit{x}) \, \big| \, \varphi \in \textit{C}^1(\mathcal{M}), \, f{-}\varphi \text{ attains a local minimum at } \textit{x} \right\} \subseteq \mathcal{T}_{\textit{x}}^* \mathcal{M},$

where $\mathcal{T}_x^*\mathcal{M} \coloneqq (\mathcal{T}_x\mathcal{M})^*$ denotes the cotangent space at *X*. In case $f(x) = +\infty$, we set $\partial_F f(x) \coloneqq \emptyset$.

Subdifferential Classification

Theorem Suppose that \mathcal{M} is a C^1 -Banach manifold. Let $x \in \mathcal{M}$, f be lower semicontinuous at every $x \in \mathcal{M}$ and $\varphi \in C^1(\mathcal{M})$. **1.** If $f^{\circledast}(\varphi) = \varphi(x) - f(x)$, *i.* e. we have equality in the Fenchel-Young inequality, then $\varphi'(x) \in \partial_F f(x)$ and the Dirac function $\delta_x \in \partial(f^{\circledast}|_{C^1(\mathcal{M})})(\varphi)$. **2.** Conversely, if $\delta_x \in \partial(f^{\circledast}|_{C^1(\mathcal{M})})(\varphi)$, then $f^{\circledast}(\varphi) = \varphi(x) - f(x)$.

Motivation: Infimal convolution

Infimal convolution is defined as

$$(f\star_{\inf} g)(x) \coloneqq \inf_{y\in\mathcal{M}} \{f(y) + g(x-y)\}.$$

The infimal convolution formula shows that

[Prop. 13.21 Bauschke, Combettes, 2011]

$$(f\star_{\operatorname{inf}}g)^*=f^*+g^*$$

📥 Nonlinear case.

We need even "slightly more structure" to generalise infimal convolution, a way to define " $x - y \in M$ " to be precise.

? Can we then get the same result for the nonlinear Fenchel conjugate? And what is a suitable restriction of $\mathcal{P}_{\pm\infty}(\mathcal{M})$ then?

Using Lie groups

Let

- \blacktriangleright \mathcal{M} be a Riemannian manifold
- $\blacktriangleright \ \cdot \colon \mathcal{M} \times \mathcal{M} \to \mathcal{M}$ be a group operation
- \bigcirc (\mathcal{M}, \cdot) is a Lie group.

We generalize infimal convolution to functions $f,g\in\mathcal{P}_\infty(\mathcal{M})$ as

$$(f\star_{\inf}g)(x):=\inf_{y\in\mathcal{M}}f(x\cdot y^{-1})+g(y)=\inf_{z\in\mathcal{M}}f(z)+g(z^{-1}\cdot x).$$

Consider the linear space of group homomorphisms

 $\mathcal{H}\coloneqq\mathsf{Hom}((\mathcal{M},\cdot),(\mathbb{R},+))$

 $\begin{array}{l} \text{Then we get the relation} \\ (f\star_{\inf}g)^{\circledast}(\varphi)=f^{\circledast}(\varphi)+g^{\circledast}(\varphi) \quad \text{for all } \varphi\in\mathcal{H}^{\text{[Schiela, Herzog, RB, 2024]}}. \end{array}$

Chambolle-Pock algorithm

Special case: Test functions on $\mathcal{T}_{x}\mathcal{M}$

For a $x \in \mathcal{M}$ consider a neighbourhood V of the origin in the tangent space $\mathcal{T}_x \mathcal{M}$ on which the exponential map \exp_x is a diffeomorphism to $\mathcal{V} := \exp_x(V) \subseteq \mathcal{M}$.

As set of test functions [WeadUSeavandi, Amini, 2010; RB, Herzog, Silva Louzeiro, Tenbrinck, Vidal-Núñez, 2021] $\mathcal{F}_{X} := \left\{ X^{*} \circ \exp_{X}^{-1} \in \mathcal{C}^{\infty}(\mathcal{V}, \mathbb{R}) \, \big| \, X^{*} \in \mathcal{T}_{X}^{*} \mathcal{M} \right\}$

We also consider a localised version of the nonlinear conjugate

$$(f + \iota_{\mathcal{V}})^{\circledast}(\varphi) = \sup_{y \in \mathcal{V}} \{\varphi(y) - f(y)\} \text{ for } \varphi \in \mathcal{F}_{x}.$$

This indeed agrees with the classical Fenchel conjugate on the tangent space as $f_x(X^*) := (f \circ \exp_x + \iota_V)^*(X^*)$

VTNI

NTNU

Saddle Point Formulation on Manifolds

On manifolds, we consider for

$$\min_{\rho \in \mathcal{M}} f(\rho) + g(\Lambda \rho), \qquad \Lambda \colon \mathcal{M} \to \mathcal{N},$$

where f is geodesically convex, and $g \circ \exp_n$ is convex for some $n \in \mathcal{N}$.

Saddle point formulation. Using the *n*-Fenchel conjugate g_n^* of *g*:

$$\min_{\boldsymbol{\rho}\in\mathcal{C}}\max_{\boldsymbol{\xi}_n\in\mathcal{T}_n^*\mathcal{N}}\langle\boldsymbol{\xi}_n\,,\log_n\Lambda(\boldsymbol{\rho})\rangle+f(\boldsymbol{\rho})-\boldsymbol{g}_n^*(\boldsymbol{\xi}_n).$$

But. A is inherently nonlinear and inside a logarithmic map \Rightarrow no adjoint.

Approach. Linearization: Choose m such that $n = \Lambda(m)$ and _[Valkonen, 2014] $\Lambda(p) \approx \exp_{\Lambda(m)} D\Lambda(m)[\log_m p].$

NTNU

The exact Riemannian Chambolle–Pock Algorithm

[RB, Herzog, Silva Louzeiro, Tenbrinck, Vidal-Núñez, 2021; Chambolle, Pock, 2011]

Input: $m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n = \Lambda(m), \xi_n^{(0)} \in \mathcal{T}_n^* \mathcal{N}, \text{ and } \sigma, \tau, \theta > 0$ 1 $k \leftarrow 0$ 2: $\bar{p}^{(0)} \leftarrow p^{(0)}$ 3: while not converged do $\xi_n^{(k+1)} \leftarrow \operatorname{prox}_{\tau \sigma^*} \left(\xi_n^{(k)} + \tau \left(\log_n \Lambda(\bar{\rho}^{(k)}) \right)^{\flat} \right)$ 4: $p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma f} \left(\exp_{\rho^{(k)}} \left(\mathsf{P}_{\rho^{(k)} \leftarrow m} \left(-\sigma D \Lambda(m)^* [\xi_n^{(k+1)}] \right)^{\sharp} \right) \right)$ 5: 6: $\bar{p}^{(k+1)} \leftarrow \exp_{p^{(k+1)}} \left(-\theta \log_{p^{(k+1)}} p^{(k)}\right)$ $k \leftarrow k + 1$ 7. 8: end while Output: $\mathcal{D}^{(k)}$

Manopt.jl

Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s, implement initialize_solver!(p, s) and step_solver!(p, s, i) ⇒ an algorithm in the Manopt.jl interface

Highlevel interfaces like gradient_descent(M, f, grad_f) on any manifold M from Manifolds.jl.

All provide debug output, recording, cache & counting capabilities, as well as a library of step sizes and stopping criteria.

Manopt family.

List of Algorithms in Manopt.jl Derivatve Free Nelder-Mead. Particle Swarm. CMA-ES Subgradient-based Subgradient Method, Convex Bundle Method, Proximal Bundle Method Gradient-based Gradient Descent, Conjugate Gradient, Stochastic, Momentum, Nesterov, Averaged, ... Quasi-Newton with (L-)BFGS, DFP, Broyden, SR1,... Levenberg-Marquard **Hessian-based** Trust Regions, Adaptive Regularized Cubics (ARC) nonsmooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point **constrained** Augmented Lagrangian, Exact Penalty, Frank-Wolfe, Interior Point Newton **nonconvex** Difference of Convex Algorithm, DCPPA

manoptjl.org/stable/solvers/

Riemannian Chambolle-Pock in Manopt.jl

To call the exact Riemannian Chambolle-Pock algorithm in Manopt.jl: ChambollePock(M, N, F, p, X, m, n, prox_f, prox_g_n, DA*; kwargs...)

- M, N are the manifolds f and g, resp., are defined on
- ▶ F is the objective function f + g
- p,n,m are the initial, Fenchel conjugate base, and linearization point, resp.
- x is the initial tangent vector
- ▶ prox_f, prox_g_n are the proximal maps of f and g_n^* , resp.
- $D\Lambda^*$ is the adjoint of the linearization of Λ

Summary

The Nonlinear Fenchel Conjugate generalises the Fenchel conjugate. A lot of properties can be proven more generally as well:

- Fenchel-Young inequality
- Biconjugate theorem
- Subdifferential classification
- Infimal convolution

• Unified framework for the existing generalisations and hence for nonsmooth optimization on Riemannian manifolds.

Example Chambolle-Pock algorithm on Riemannian manifolds and its implementation in Manopt.jl.

Selected References

RB (2022). "Manopt.jl: Optimization on Manifolds in Julia". *Journal of Open Source Software* 7.70, p. 3866. DOI: 10.21105/joss.03866.

- RB; R. Herzog; M. Silva Louzeiro; D. Tenbrinck; J. Vidal-Núñez (2021). "Fenchel duality theory and a primal-dual algorithm on Riemannian manifolds". Foundations of Computational Mathematics 21.6, pp. 1465–1504. DOI: 10.1007/s10208-020-09486-5. arXiv: 1908.02022.
- 国

Ξ

- Boumal, N.; B. Mishra; P.-A. Absil; R. Sepulchre (2014). "Manopt, a Matlab toolbox for optimization on manifolds". *Journal of Machine Learning Research* 15, pp. 1455–1459. URL: https://www.jmlr.org/papers/v15/boumal14a.html.
- Ξ
- De Carvalho Bento, G.; J. C. Neto; Í. D. L. Melo (2023). "Fenchel conjugate via Busemann function on Hadamard manifolds". *Applied Mathematics & Optimization* 88.3. DOI: 10.1007/s00245-023-10060-y.
- Schiela, A.; R. Herzog; RB (2024). Nonlinear Fenchel conjugates. arXiv: 2409.04492.
- Silva Louzeiro, M.; RB; R. Herzog (2022). "Fenchel duality and a separation theorem on Hadamard manifolds". *SIAM Journal on Optimization* 32.2, pp. 854–873. DOI: 10.1137/21m1400699. arXiv: 2102.11155.
- Townsend, J.; N. Koep; S. Weichwald (2016). *Pymanopt: A python toolbox for optimization on manifolds using automatic differentiation*. arXiv: 1603.03236.

Interested in Numerical Differential Geometry? Join 🏖 numdiffgeo.zulipchat.com!