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The Fenchel Conjugate

The Fenchel conjugate of a function f: R” — R is given by

P = mpien 10 - 2 () (1)

> given £ € R": maximize the distance between £T- and
g

P can also be written in the epigraph

The Fenchel biconjugate reads

) = ()" (%) = sup (&, x) = f($)-

§ER”




lllustration of the Fenchel Conjugate
The function f The Fenchel conjugate f*
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The Chambolle—Pock Algorithm

From the pair of primal-dual problems [Chambolle, Pock, 2011]
min f(x) + g(Kx), K linear,
XxeRN
max — f*(=K"¢) —g"(¢)

EERM

we obtain for f, g proper convex, Isc the
optimality conditions of a solution (X, &) as

—K¢ € Of(%)
Kx € 9g*(€)




The Chambolle—Pock Algorithm

From the pair of primal-dual problems [Chambolle, Pock, 2011]
min f(x) + g(Kx), K linear,
XxeRN
max — f*(=K"¢) —g"(¢)

EERM

we obtain for f, g proper convex, Isc the

Chambolle-Pock Algorithm. with ¢ > 0, 7 > 0, 6 € R reads
X+ — proxaf(x(k) — aK*g'("))

glktt) — ProX, - (g(k) I TKx(k“))
gt — gl 4 g(elier) _ )




Applications of the Fenchel conjugate
The Fenchel conjugate is at the core of nonsmooth optimization

arxgeglin f(x) + g(Kx)

as a so-called splitting method
> primal—d ual (PD) algorith ms [Esser, Zhang, Chan, 2010; Chambolle, Pock, 2011]

» PD with non-linear operators K [Valkonen, 2014; Mom, Langer, Sixou, 2022]
» several variants: hybrid gradient, primal/dual relaxed, linearized,..

Recently this has been generalised Riemannian manifolds using

> a ta ngent Space approach [RB, Herzog, Silva Louzeiro, Tenbrinck, Vidal-Nudfiez, 2021]
» a tangent bundle approach [Silva Louzeiro, RB, Herzog, 2022]
> Busemann fu nCtionS [de Carvalho Bento, Neto, Melo, 2023]

Al Formulate a framework for Fenchel conjugates on nonlinear spaces.



The Nonlinear Fenchel Conjugate |
[Schiela, Herzog, RB, 2024]

In the Fenchel conjugate we use linear test functions ¢(x) = (£, ).

* Use use arbitrary test functions

Let M be a set. We define the domain of the sum (difference) of two
extended real-valued functions f, g € P (M) as

D(f£8) = {x € M|f(x) £ g(x) is defined}.

Definition
The nonlinear Fenchel conjugate of f € Py, (M) is defined as

f®i Pj:oo(./\/l) — R:I:oo
@ = f(p) = sup{p(x) — f(X) | x € D(p — N}




A few properties
The following properties carry over to the nonlinear case,
just being a bit careful with the domain of the test functions.

Suppose that f?g € P:I:OO (M) [Schiela, Herzog, RB, 2024]
1. Fora >0 and § € R,

af (¢) + 8 = (af)*(a v + B) = (of = B)*(a ).
2. If D(f— 1) = D(p + ¥)) = M, then
(f=0)*(¢) =F (o +¥).
3.  D(f+ &) =D(p +¢) = M and fo(¢) + g°(¢) is defined, then
F+8)%(p+v) <f(p) +8°(¥).

- = ¢ and f < g implies () = 8(¢).
]‘® is convex on Py (M).




The Fenchel-Young inequality

An important inequality in the classical case is the Fenchel-Young
inequality

o) +f(€) = (&%)
This carries over to the nonlinear case, with a bit of carefulness as to
when the sum is defined.
Theorem (Fenchel-Young inequality)

Suppose that f, p € Pioo(M) and x € M.
The Fenchel-Young inequalities

> f(e) = e(x) - f(x)
> f(x) = o(x) = fo(¢)
> p(x) < f(X) + ()

hold, provided that the respective right-hand side is defined in R4 .




Nonlinear dual map
Motivation. In the classical case, we saw K* the adjoint or dual map of K.

Definition
Suppose M and N are two non-empty sets and A: M — A is some map.
The map

A®: Proo(N) = Piro(M)
> A%(Y) =Y oA

is called the dual or adjoint map of A, or the pullback by A.

> A®(acipr +1p) = aA®(Y1) + A®(1)2) is a homomorphism
> If A is bijective, then (fo A=1)® = f® 0 A®

» more generally:

defining (fe A~")(y) == infyca-1() f(X), we obtain (fe A~")® = f* 0 A®.




Motivation: The biconjugate

» approximate f its maximal convex, Isc. minorant

» linear setting: -regularization, the pointwise suppremum of
continuous affine functions. [Ch. 1.3 Ekeland, Tema, 1999]

= f* € Pioo(V) coincides with I-regularization of f, i.e.
the largest convex Isc. minorant of f € Py (V)

[Thm. 13.32 Bauschke, Combettes, 2011]

» Fenchel-Moreau:
f € Pxo(V) is convex, Isc. < f* =T.

A Nonlinear case.

Find a suitable subset 7 C P1 (M) as a generalization for affine
functions.

? Can we state a biconjugation theorem as well?




B F regularization

NTNU

[Schiela, Herzog, RB, 2024]

Suppose that ) # F C P, (M) and denote by
F={p+clpeF ceR}
the set of all ¢ that result from a shift of elements of F.
We define the F-regularization of f € P, (M) as
[ fl7(x) = sup{(x) | ¢ € F. o < f}.

¢ | fl £ is the pointwise supremum of all minorants of f taken from F and
its constant shifts.

In short we write: | f|» =sup{p|p € F, o <f}



Some properties of F-regularization

[Schiela, Herzog, RB, 2024]

. f<gand F C G implies |f] » < |g]g-

Foroe FandceRwe have [f+o+cC|-=|fl]r+p+C
flr<fithusf<|flr& flr=f

feF=Ifls=f

F <G implies [|flg]r = |fl#.

if 7 is a convex cone we obtain for ay,a; > 0 and f1,fo € Pioo(M)
with |f1] - # —oc and [f2] r Z —oc0 we obtain

arlfi]r + a2lfa] 7 < laafi + aofa] < avfi + aofs

oA wN =




B Examples
1. If M is a locally convex linear topological space

NTNU

> F = M* is its topological dual space
» F is the space of all continuous affine functions
» |f] 4+ is the pointwise supremum over all affine minorants of f.

2. Suppose that M is a metric space.
» Then lower semi-continuous functions f € Py (M) can be written as

the pointwise supremum of continuous functions
> For 7 = C(M) the set sup-cl(F) = {|f| | f € P1oc(M)} consists
of the cone of lower semi-continuous functions in Py, (M)
3. alternate generalization: the C-conjugate [Martinez-Legaz, 2005]
For a coupling function ¢: M x N/ — R, ., defined as
f(v) = supc(x,y) —f(x) forye N.

XeM

Generalizes duality pairing instead of the set of test functions.



JF-biconjugates bt Hernon, R, 2004
» We denote the restriction of the conjugate f* € P, (M) to F by
Plr: F = Rioo
» Let the evaluation (Dirac) functions be given by
Ox: Proo(M) = Ruce, 0+ 0x(i0) = 0(X).

@ x|, F C Pioo(M) linear, is a linear function and continuous.

Definition
Suppose that F is a linear subspace of P(M).
We define the F-biconjugate f5* of f € Pio(M) as

59 M — Ryw, X = (f%17)%(0x).

Note. We employ theembedding of M into the dual space of F via
_/MH]:/CM—)JT'.I, X — Oy.




F biconjugate theorem

Remember.
For the classical Fenchel biconjugate the set F are all affine functions
and | f] = is largest convex Isc. minorant of f € P, (V)

Theorem [Schiela, Herzog, RB, 2024]
Suppose that F is a linear subspace of P(M). The F-biconjugate

satisfies f3* = |f] z for all f € Pioo(M).

@ If f= |f]| 7, or in other words f agrees with the pointwise supremum of
all minorants from F, then we recover f from its F-biconjugate.




Motivation: The subdifferential

With the Fenchel conjugate f*: V* — R, of a proper, convex, Isc.
function f: V — R, on a vector space V we have

£ e df(x) ifandonlyif xedf (&)

(® we can characterize both subdifferentials.

A Nonlinear case.
We need “more structure on M" to define a subdifferential of f.
In practice/numerics we use Riemannian manifolds.

In the following we consider a manifold M, that is locally homeomorphic
to a Banach space X', or a Banach manifold for short.




B The viscosity Fréchet Subdifferential

NTNU A function f € P1(M) is lower semi-continuous at X € M if,

Ve > 0 3 a neighbourhood U of X s.t. that f(y) > f(x) — e for all y € U.
We denote by Isc, (M) the set of all functions that are lower
semi-continuous at every x € M.

Definition
Suppose that M is a C'-Banach manifold, f € Isc,,(M), x € M and

1) # +oo.
The (viscosity) Fréchet subdifferential Ogf(x) of f is defined as follows:

Oef(x) = {¢'(X) | ¢ € C' (M), f—¢ attains a local minimum at x} C T;'M,

where 7'M = (T, M)* denotes the cotangent space at X.
In case f(X) = +o0, we set Of(x) = 0.



Subdifferential Classification

Theorem ] ] [Schiela, Herzog, RB, 2024]
Suppose that M is a C'-Banach manifold.

Let x € M, f be lower semicontinuous at every x € M and ¢ € C'(M).

1. Iff*(¢) = o(x) — f(x), i. e. we have equality in the Fenchel-Young
inequality,
then ¢'(X) € Ogf(X) and the Dirac function dx € O(f*|c1( ) ().

2. Conversely, if ox € O(f*|c1(my) (), then f(¢) = ¢(X) — f(X).




Motivation: Infimal convolution
Infimal convolution is defined as
(Fxine 8)(X) = inf {f(y) +8(x —¥)}.
yeM

The infimal convolution formula shows that [Prop. 13.21 Bauschke, Combettes, 2011]

(Frnc8) =f +&
Aa Nonlinear case.

We need even “slightly more structure” to generalise infimal convolution,
a way to define “x —y € M" to be precise.

? Can we then get the same result for the nonlinear Fenchel conjugate?
And what is a suitable restriction of P, (M) then?




Using Lie groups
Let
» M be a Riemannian manifold
> - M x M — M be a group operation
@ (M,-) is a Lie group.

We generalize infimal convolution to functions f,g € P, (M) as

(fxinr ) () - flx-y™) +8) = inf f(2) +8(z7" - x).

= inf inf
yemMm zeM

Consider the linear space of group homomorphisms
H o= Hom((M7 ')7 (Ra +))

Then we get the relation Schiela, Herzog, RB, 2024]

(Fur8)" (¢) =F(¢) +&°(¢) forall gt




Chambolle-Pock algorithm
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B Special case: Test functions on 7, M

NTNU

For a x € M consider a neighbourhood V of the origin in the tangent
space TxM on which the exponential map exp, is a diffeomorphism to

V= exp,(V) C M.

AS Set Of test fu nCt|0nS MW@ diJSRavandi, Amini, 2010; RB, Herzog, Silva Louzeiro, Tenbrinck, Vidal-Nifiez, 2021]
. * -1 00 * *
Fr = {x" oexpy' € C°(V,R) | x* € TEM}

We also consider a localised version of the nonlinear conjugate

(F+w)*(p) = ;gg{so(y) —f)} forp € .

This indeed agrees with the classical Fenchel conjugate on the tangent
space as fx(x*) == (f o exp, +1v)*(x*)



Saddle Point Formulation on Manifolds

On manifolds, we consider for

flp) +8(Ap), A M= N,

min
peM
where f is geodesically convex, and g o exp,, is convex for some n € N.

Saddle point formulation. Using the n-Fenchel conjugate g of &:

229 fnrg%gjv@n ,log, A(p)) +f(p) — & (&n)-

But. A is inherently nonlinear and inside a logarithmic map =- no adjoint.

Approach. Linearization: Choose m such that n = A(m) and  vakonen, 2014

A(p) ~ expp(my DA(m)[log,, p].




B The exact Riemannian Chambolle—Pock Algorithm

NTNU

[RB, Herzog, Silva Louzeiro, Tenbrinck, Vidal-Ndfiez, 2021; Chambolle, Pock, 2011]

Input: m, p© € C c M, n=Am )gn €TN,and o, 7,0 >0
1. k<0
PO  p©

while not converged do

S proxg: (647 + 7 (log,A(PY)))

5: Pk proxaf(exppw (Pp(m_m( oDA(m)*[<)" W)D ))

: ,(_J(k+1) < eXPp(ki) (—19 |ng(k+1) ,D(k))
7 k< k+1
8: end while
Output: p

sen



B Manopt.jl /

NTNU

Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s,
implement initialize_solver!(p, s) and step_solver!(p, s, i)
= an algorithm in the Manopt.jl interface

Highlevel interfaces like gradient_descent(M, f, grad_f)
on any manifold M from Manifolds.jl.

All provide debug output, recording, cache & counting capabilities,
as well as a library of step sizes and stopping criteria.

Manopt family.

e manoptjl.org F\ manopt.org e pymanopt.org

[RB, 2022] [Boumal, Mishra, Absil, Sepulchre, 2014] [Townsend, Koep, Weichwald, 2016]



https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org

List of Algorithms in Manopt.jl /

Derivatve Free Nelder-Mead, Particle Swarm, CMA-ES
Subgradient-based Subgradient Method, Convex Bundle Method,
Proximal Bundle Method

Gradient-based Gradient Descent, Conjugate Gradient, Stochastic,

Momentum, Nesterov, Averaged, ..
Quasi-Newton with (L-)BFGS, DFP, Broyden, SR1,...
Levenberg-Marquard

Hessian-based Trust Regions, Adaptive Regularized Cubics (ARC)
nonsmooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point

constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe,
Interior Point Newton

nonconvex Difference of Convex Algorithm, DCPPA

e® manoptjl.org/stable/solvers/



https://www.manoptjl.org/stable/solvers/

B Riemannian Chambolle-Pock in Manopt.jl

NTNU

To call the exact Riemannian Chambolle-Pock algorithm in Manopt. ji:

ChambollePock (
M, N, F, p, X, m, n, prox_f, prox_g_n, DA*; kwargs...
)
» M, N are the manifolds f and g, resp., are defined on
» F is the objective function f+ g

» p,n,m are the initial, Fenchel conjugate base, and linearization point,
resp.

v

X is the initial tangent vector

v

prox_f, prox_g_n are the proximal maps of f and g%, resp.
» DA* is the adjoint of the linearization of A



Summary

The Nonlinear Fenchel Conjugate generalises the Fenchel conjugate.
A lot of properties can be proven more generally as well:

» Fenchel-Young inequality
» Biconjugate theorem
» Subdifferential classification

» |nfimal convolution

3 Unified framework for the existing generalisations
and hence for nonsmooth optimization on Riemannian manifolds.

Example Chambolle-Pock algorithm on Riemannian manifolds
and its implementation in Manopt. j1.
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