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The Fenchel Conjugate
The Fenchel conjugate of a function f : Rn → R is given by

f ∗(ξ) := sup
x∈Rn
〈ξ, x〉 − f(x) = sup

x∈Rn

(
ξ
−1

)T( x
f(x)

)

▶ given ξ ∈ Rn: maximize the distance between ξT· and f
▶ can also be written in the epigraph

The Fenchel biconjugate reads

f ∗ ∗(x) = (f ∗) ∗(x) = sup
ξ∈Rn
〈ξ , x〉 − f ∗(ξ).
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Illustration of the Fenchel Conjugate
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The Chambolle–Pock Algorithm
From the pair of primal-dual problems [Chambolle, Pock, 2011]

min
x∈Rn

f(x) + g(Kx), K linear,

max
ξ∈Rm

− f ∗(−K∗ξ)− g ∗(ξ)

we obtain for f, g proper convex, lsc the
optimality conditions of a solution (x̂, ξ̂) as

−K∗ξ̂ ∈ ∂f(x̂)
Kx̂ ∈ ∂g ∗(ξ̂)

Chambolle–Pock Algorithm. with σ > 0, τ > 0, θ ∈ R reads

x(k+1) = proxσf
(
x(k) − σK∗ξ̄(k)

)
ξ(k+1) = proxτg ∗

(
ξ(k) + τKx(k+1))

ξ̄(k+1) = ξ(k+1) + θ(ξ(k+1) − ξ(k))
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Applications of the Fenchel conjugate
The Fenchel conjugate is at the core of nonsmooth optimization

argmin
x∈Rn

f(x) + g(Kx)

as a so-called splitting method
▶ primal-dual (PD) algorithms [Esser, Zhang, Chan, 2010; Chambolle, Pock, 2011]

▶ PD with non-linear operators K [Valkonen, 2014; Mom, Langer, Sixou, 2022]

▶ several variants: hybrid gradient, primal/dual relaxed, linearized,…

Recently this has been generalised Riemannian manifolds using
▶ a tangent space approach [RB, Herzog, Silva Louzeiro, Tenbrinck, Vidal-Núñez, 2021]

▶ a tangent bundle approach [Silva Louzeiro, RB, Herzog, 2022]

▶ Busemann functions [de Carvalho Bento, Neto, Melo, 2023]

Formulate a framework for Fenchel conjugates on nonlinear spaces.
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The Nonlinear Fenchel Conjugate
[Schiela, Herzog, RB, 2024]

In the Fenchel conjugate we use linear test functions φ(x) = 〈ξ, x〉.
Use use arbitrary test functions

Let M be a set. We define the domain of the sum (difference) of two
extended real-valued functions f, g ∈ P±∞(M) as

D(f± g) := {x ∈M| f(x)± g(x) is defined}.

Definition
The nonlinear Fenchel conjugate of f ∈ P±∞(M) is defined as

f⊛ : P±∞(M)→ R±∞
φ 7→ f⊛(φ) := sup{φ(x)− f(x) | x ∈ D(φ− f)}.



7

A few properties
The following properties carry over to the nonlinear case,
just being a bit careful with the domain of the test functions.
Suppose that f, g ∈ P±∞(M). [Schiela, Herzog, RB, 2024]

1. For α > 0 and β ∈ R,
αf⊛(φ) + β = (αf)⊛(αφ+ β) = (αf− β)⊛(αφ).

2. If D(f− ψ) = D(φ+ ψ) =M, then
(f− ψ)⊛(φ) = f⊛(φ+ ψ).

3. If D(f+ g) = D(φ+ ψ) =M and f⊛(φ) + g⊛(ψ) is defined, then
(f+ g)⊛(φ+ ψ) ⩽ f⊛(φ) + g⊛(ψ).

4. φ ⩾ ψ and f ⩽ g implies f⊛(φ) ⩾ g⊛(ψ).
5. f⊛ is convex on P∞(M).
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The Fenchel-Young inequality
An important inequality in the classical case is the Fenchel-Young
inequality

f(x) + f ∗(ξ) ≥ 〈ξ, x〉

This carries over to the nonlinear case, with a bit of carefulness as to
when the sum is defined.
Theorem (Fenchel-Young inequality)
Suppose that f, φ ∈ P±∞(M) and x ∈M.
The Fenchel-Young inequalities
▶ f⊛(φ) ⩾ φ(x)− f(x)
▶ f(x) ⩾ φ(x)− f⊛(φ)
▶ φ(x) ⩽ f(x) + f⊛(φ)

hold, provided that the respective right-hand side is defined in R±∞.
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Nonlinear dual map
Motivation. In the classical case, we saw K∗ the adjoint or dual map of K.
Definition
SupposeM and N are two non-empty sets and A :M→N is some map.
The map

A⋆ : P±∞(N )→ P±∞(M)

ψ 7→ A⋆(ψ) := ψ ◦ A

is called the dual or adjoint map of A, or the pullback by A.

▶ A⋆(αψ1 + ψ2) = α A⋆(ψ1) + A⋆(ψ2) is a homomorphism
▶ If A is bijective, then (f ◦ A−1)⊛ = f⊛ ◦ A⋆

▶ more generally:
defining (f •A−1)(y) := infx∈A−1(y) f(x), we obtain (f •A−1)⊛ = f⊛ ◦A⋆.
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Motivation: The biconjugate
▶ approximate f its maximal convex, lsc. minorant
▶ linear setting: Γ-regularization, the pointwise suppremum of

continuous affine functions. [Ch. I.3 Ekeland, Temam, 1999]

⇒ f∗∗ ∈ P±∞(V) coincides with Γ-regularization of f, i. e.
the largest convex lsc. minorant of f ∈ P±∞(V)

▶ Fenchel-Moreau: [Thm. 13.32 Bauschke, Combettes, 2011]

f ∈ P∞(V) is convex, lsc. ⇔ f∗∗ = f.

Nonlinear case.
Find a suitable subset F ⊂ P±∞(M) as a generalization for affine
functions.

Can we state a biconjugation theorem as well?
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F regularization
[Schiela, Herzog, RB, 2024]

Suppose that ∅ 6= F ⊆ P±∞(M) and denote by

F̃ := {φ+ c |φ ∈ F , c ∈ R}

the set of all φ that result from a shift of elements of F .

We define the F -regularization of f ∈ P±∞(M) as

b fcF(x) := sup
{
φ(x)

∣∣φ ∈ F̃ , φ ⩽ f
}
.

b fcF is the pointwise supremum of all minorants of f taken from F and
its constant shifts.

In short we write: b fcF = sup
{
φ
∣∣φ ∈ F̃ , φ ⩽ f

}
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Some properties of F-regularization
[Schiela, Herzog, RB, 2024]

1. f ⩽ g and F ⊆ G implies bfcF ⩽ bgcG.
2. For φ ∈ F and c ∈ R we have bf+ φ+ ccF = bfcF + φ+ c.
3. bfcF ⩽ f, thus f ⩽ bfcF ⇔ bfcF = f
4. f ∈ F ⇒ bfcF = f.
5. F ⊆ G implies bbfcGcF = bfcF .
6. if F is a convex cone we obtain for α1, α2 > 0 and f1, f2 ∈ P±∞(M)

with bf1cF 6≡ −∞ and bf2cF 6≡ −∞ we obtain

α1bf1cF + α2bf2cF ⩽ bα1f1 + α2f2cF ⩽ α1f1 + α2f2
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Examples
1. If M is a locally convex linear topological space

▶ F =M∗ is its topological dual space
▶ F̃ is the space of all continuous affine functions
▶ bfcM∗ is the pointwise supremum over all affine minorants of f.

2. Suppose that M is a metric space.
▶ Then lower semi-continuous functions f ∈ P∞(M) can be written as

the pointwise supremum of continuous functions
▶ For F = C(M) the set sup-cl(F) :=

{
bfcF

∣∣ f ∈ P±∞(M)
}

consists
of the cone of lower semi-continuous functions in P∞(M)

3. alternate generalization: the c-conjugate [Martínez-Legaz, 2005]

For a coupling function c :M×N → R±∞ defined as

fc(y) := sup
x∈M

c(x, y)− f(x) for y ∈ N .

Generalizes duality pairing instead of the set of test functions.
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F-biconjugates [Schiela, Herzog, RB, 2024]

▶ We denote the restriction of the conjugate f⊛ ∈ P±∞(M) to F by
f⊛|F : F → R±∞

▶ Let the evaluation (Dirac) functions be given by
δx : P±∞(M)→ R±∞, φ 7→ δx(φ) := φ(x).

δx|F , F ⊂ P±∞(M) linear, is a linear function and continuous.
Definition
Suppose that F is a linear subspace of P(M).
We define the F -biconjugate f⊛⊛

F of f ∈ P±∞(M) as

f⊛⊛
F :M→ R±∞, x 7→ (f⊛|F)⊛(δx).

Note. We employ theembedding of M into the dual space of F via
JM→F ′ :M→ F ′, x 7→ δx.
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F biconjugate theorem

Remember.
For the classical Fenchel biconjugate the set F are all affine functions
and b fcF is largest convex lsc. minorant of f ∈ P±∞(V)

Theorem [Schiela, Herzog, RB, 2024]
Suppose that F is a linear subspace of P(M). The F -biconjugate
satisfies f⊛⊛

F = bfcF for all f ∈ P±∞(M).

If f = bfcF , or in other words f agrees with the pointwise supremum of
all minorants from F , then we recover f from its F -biconjugate.
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Motivation: The subdifferential
With the Fenchel conjugate f∗ : V∗ → R±∞ of a proper, convex, lsc.
function f : V→ R±∞ on a vector space V we have

ξ ∈ ∂f(x) if and only if x ∈ ∂f∗(ξ)

we can characterize both subdifferentials.

Nonlinear case.
We need “more structure on M” to define a subdifferential of f.

In practice/numerics we use Riemannian manifolds.
In the following we consider a manifold M, that is locally homeomorphic
to a Banach space X , or a Banach manifold for short.
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The viscosity Fréchet Subdifferential
A function f ∈ P±∞(M) is lower semi-continuous at x ∈M if,
∀ε > 0 ∃ a neighbourhood U of x s.t. that f(y) ⩾ f(x)− ε for all y ∈ U .
We denote by lsc∞(M) the set of all functions that are lower
semi-continuous at every x ∈M.
Definition
Suppose that M is a C1-Banach manifold, f ∈ lsc∞(M), x ∈M and
f(x) 6= +∞.
The (viscosity) Fréchet subdifferential ∂Ff(x) of f is defined as follows:

∂Ff(x) :=
{
φ′(x)

∣∣φ ∈ C1(M), f−φ attains a local minimum at x
}
⊆ T ∗xM,

where T ∗xM := (TxM)∗ denotes the cotangent space at x.
In case f(x) = +∞, we set ∂Ff(x) := ∅.
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Subdifferential Classification

Theorem [Schiela, Herzog, RB, 2024]
Suppose that M is a C1-Banach manifold.
Let x ∈M, f be lower semicontinuous at every x ∈M and φ ∈ C1(M).

1. If f⊛(φ) = φ(x)− f(x), i. e. we have equality in the Fenchel-Young
inequality,
then φ′(x) ∈ ∂Ff(x) and the Dirac function δx ∈ ∂(f⊛|C1(M))(φ).

2. Conversely, if δx ∈ ∂(f⊛|C1(M))(φ), then f⊛(φ) = φ(x)− f(x).
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Motivation: Infimal convolution
Infimal convolution is defined as

(f ⋆inf g)(x) := inf
y∈M
{f(y) + g(x− y)} .

The infimal convolution formula shows that [Prop. 13.21 Bauschke, Combettes, 2011]

(f ⋆inf g)∗ = f∗ + g∗

Nonlinear case.
We need even “slightly more structure” to generalise infimal convolution,
a way to define “x− y ∈M” to be precise.

Can we then get the same result for the nonlinear Fenchel conjugate?
And what is a suitable restriction of P±∞(M) then?
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Using Lie groups
Let
▶ M be a Riemannian manifold
▶ · :M×M→M be a group operation

(M, ·) is a Lie group.

We generalize infimal convolution to functions f, g ∈ P∞(M) as

(f ⋆inf g)(x) := inf
y∈M

f(x · y−1) + g(y) = inf
z∈M

f(z) + g(z−1 · x).

Consider the linear space of group homomorphisms

H := Hom((M, ·), (R,+))

Then we get the relation [Schiela, Herzog, RB, 2024]
(f ⋆inf g)⊛(φ) = f⊛(φ) + g⊛(φ) for all φ ∈ H.
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Special case: Test functions on TxM

For a x ∈M consider a neighbourhood V of the origin in the tangent
space TxM on which the exponential map expx is a diffeomorphism to
V := expx(V) ⊆M.

As set of test functions we use[Ahmadi Kakavandi, Amini, 2010; RB, Herzog, Silva Louzeiro, Tenbrinck, Vidal-Núñez, 2021]

Fx :=
{
x∗ ◦ exp−1x ∈ C∞(V ,R)

∣∣ x∗ ∈ T ∗xM}
We also consider a localised version of the nonlinear conjugate

(f+ ιV)
⊛(φ) = sup

y∈V

{
φ(y)− f(y)

}
for φ ∈ Fx.

This indeed agrees with the classical Fenchel conjugate on the tangent
space as fx(x∗) := (f ◦ expx+ιV)∗(x∗)
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Saddle Point Formulation on Manifolds
On manifolds, we consider for

min
p∈M

f(p) + g(Λp), Λ:M→N ,

where f is geodesically convex, and g ◦ expn is convex for some n ∈ N .

Saddle point formulation. Using the n-Fenchel conjugate g ∗n of g:

min
p∈C

max
ξn∈T ∗

nN
〈ξn , logn Λ(p)〉+ f(p)− g ∗n (ξn).

But. Λ is inherently nonlinear and inside a logarithmic map ⇒ no adjoint.

Approach. Linearization: Choose m such that n = Λ(m) and [Valkonen, 2014]

Λ(p) ≈ expΛ(m) DΛ(m)[logm p].
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The exact Riemannian Chambolle–Pock Algorithm
[RB, Herzog, Silva Louzeiro, Tenbrinck, Vidal-Núñez, 2021; Chambolle, Pock, 2011]

Input: m, p(0) ∈ C ⊂M, n = Λ(m), ξ(0)n ∈ T ∗nN , and σ, τ, θ > 0
1: k← 0
2: p̄(0) ← p(0)

3: while not converged do
4: ξ

(k+1)
n ← proxτg ∗

n

(
ξ
(k)
n + τ

(
lognΛ(p̄(k))

)
♭
)

5: p(k+1) ← proxσf

(
expp(k)

(
Pp(k)←m

(
− σDΛ(m)∗[ξ

(k+1)
n ]

)
♯
))

6: p̄(k+1) ← expp(k+1)

(
−θ logp(k+1) p(k)

)
7: k← k+ 1
8: end while

Output: p(k)
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Manopt.jl
Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s,
implement initialize_solver!(p, s) and step_solver!(p, s, i)
⇒ an algorithm in the Manopt.jl interface

Highlevel interfaces like gradient_descent(M, f, grad_f)
on any manifold M from Manifolds.jl.
All provide debug output, recording, cache & counting capabilities,
as well as a library of step sizes and stopping criteria.

Manopt family.
manoptjl.org

[RB, 2022]
manopt.org

[Boumal, Mishra, Absil, Sepulchre, 2014]
pymanopt.org
[Townsend, Koep, Weichwald, 2016]

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org
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List of Algorithms in Manopt.jl
Derivatve Free Nelder-Mead, Particle Swarm, CMA-ES
Subgradient-based Subgradient Method, Convex Bundle Method,

Proximal Bundle Method
Gradient-based Gradient Descent, Conjugate Gradient, Stochastic,

Momentum, Nesterov, Averaged, …
Quasi-Newton with (L-)BFGS, DFP, Broyden, SR1,...
Levenberg-Marquard

Hessian-based Trust Regions, Adaptive Regularized Cubics (ARC)
nonsmooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point
constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe,

Interior Point Newton
nonconvex Difference of Convex Algorithm, DCPPA

manoptjl.org/stable/solvers/

https://www.manoptjl.org/stable/solvers/
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Riemannian Chambolle-Pock in Manopt.jl

To call the exact Riemannian Chambolle-Pock algorithm in Manopt.jl:
ChambollePock(

M, N, F, p, X, m, n, prox_f , prox_g_n , DΛ∗; kwargs...
)

▶ M, N are the manifolds f and g, resp., are defined on
▶ F is the objective function f+ g
▶ p,n,m are the initial, Fenchel conjugate base, and linearization point,

resp.
▶ X is the initial tangent vector
▶ prox_f, prox_g_n are the proximal maps of f and g∗n, resp.
▶ DΛ∗ is the adjoint of the linearization of Λ
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Summary
The Nonlinear Fenchel Conjugate generalises the Fenchel conjugate.
A lot of properties can be proven more generally as well:
▶ Fenchel-Young inequality
▶ Biconjugate theorem
▶ Subdifferential classification
▶ Infimal convolution

Unified framework for the existing generalisations
and hence for nonsmooth optimization on Riemannian manifolds.

Example Chambolle-Pock algorithm on Riemannian manifolds
and its implementation in Manopt.jl.
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