

Manopt.jl Optimization on Riemannian Manifolds in Julia

Ronny Bergmann

Julia for numerical problems in quantum and solid-state physicsCECAM workshop, Lausanne,November 27, 2024.

Optimization on Manifolds

 $\argmin_{p\in\mathcal{M}} f(p)$

- $f \colon \mathcal{M} \to \mathbb{R}$ is a (smooth) function
- \blacktriangleright \mathcal{M} is a Riemannian manifold
- ➔ Riemannian optimization

This especially includes

- nonsmooth problems: f is (only) lower semicontinuous
- \bigcirc splitting methods f(p) = g(p) + h(p), where g is smooth
- Difference of Convex problems f(p) = g(p) h(p)
- constraints $p \in C \subset M$

The Rayleigh Quotient

When minimizing the Rayleigh quotient for a symmetric $A \in \mathbb{R}^{n \times n}$

 $\arg\min_{x\in\mathbb{R}^n\setminus\{0\}}\frac{x^{\mathsf{T}}Ax}{\|x\|^2}$

Any eigenvector x^* to the smallest EV λ is a minimizer \checkmark no isolated minima and Newton's method diverges \circlearrowright Constrain the problem to unit vectors ||x|| = 1!classic constrained optimization (ALM, EPM, IP Newton, ...) Today Utilize the geometry of the sphere \bigstar unconstrained optimization $\underset{p \in \mathbb{S}^{n-1}}{\arg \min p^{\mathsf{T}}Ap}$

⅔ adapt unconstrained optimization to Riemannian manifolds.

The Generalized Rayleigh Quotient

More general. Find a basis for the space of eigenvectors to $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k$:

 $\underset{X \in \operatorname{St}(n,k)}{\operatorname{arg\,min\,tr}}(X^{\mathsf{T}}AX), \qquad \operatorname{St}(n,k) \coloneqq \{X \in \mathbb{R}^{n \times k} \mid X^{\mathsf{T}}X = I\},$

 \triangleq a problem on the Stiefel manifold St(n, k)

 \triangle Invariant under rotations within a k-dim subspace.

 \bigcirc Find the best subspace!

 $\underset{\mathsf{span}(X)\in\mathsf{Gr}(n,k)}{\operatorname{arg\,min}}\operatorname{tr}(X^{\mathsf{T}}AX),\qquad \mathsf{Gr}(n,k)\coloneqq \big\{\mathsf{span}(X)\,\big|\,X\in\mathsf{St}(n,k)\big\},$

 \blacktriangle a problem on the Grassmann manifold Gr(n,k) = St(n,k)/O(k).

A Riemannian Manifold ${\cal M}$

A *d*-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a "suitable" collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^d and a continuously varying inner product on the tangent spaces.

[Absil, Mahony, Sepulchre, 2008]

A Riemannian Manifold ${\cal M}$

Notation.

• Logarithmic map $\log_p q = \dot{\gamma}(0; p, q)$

 $\mathcal{T}_{n}\mathcal{M}$

q

X

log,

 $\gamma(\cdot; p, q)$

 \mathcal{M}

 $\log_p p$

- Exponential map $\exp_{\rho} X = \gamma_{\rho,X}(1)$
- Geodesic $\gamma(\cdot; p, q)$
- ▶ Tangent space $\mathcal{T}_p\mathcal{M}$
- ▶ inner product $(\cdot, \cdot)_p$

Numerics.

 \exp_p and \log_p maybe not available efficiently/ in closed form

 \Rightarrow use a retraction and its inverse instead.

(Geodesic) Convexity

[Sakai, 1996; Udriște, 1994]

A set $C \subset M$ is called (strongly geodesically) convex if for all $p, q \in C$ the geodesic $\gamma(\cdot; p, q)$ is unique and lies in C.

A function $f: \mathcal{C} \to \overline{\mathbb{R}}$ is called (geodesically) convex if for all $p, q \in \mathcal{C}$ the composition $f(\gamma(t; p, q)), t \in [0, 1]$, is convex.

ManifoldsBase.jl

Goal. Provide an interface to implement and use Riemannian manifolds.

Interface AbstractManifold to model manifolds

Functions like exp(M, p, X), log(M, p, X) or retract(M, p, X, method).

Decorators for implicit or explicit specification of an embedding, a metric, or a group,

Efficiency by providing in-place variants like exp!(M, q, p, X)

Manifolds.jl

Goal. Provide a library of Riemannian manifolds, that is efficiently implemented and well-documented

Meta. generic implementations for $\mathcal{M}^{n \times m}$, $\mathcal{M}_1 \times \mathcal{M}_2$, vector- and tangent-bundles, esp. $T_p \mathcal{M}$, or Lie groups

Library. Implemented functions for

- ► Circle, Sphere, Torus, Hyperbolic, Projective Spaces, Hamiltonian
- (generalized, symplectic) Stiefel, Rotations
- (generalized, symplectic) Grassmann, fixed rank matrices
- Symmetric Positive Definite matrices, with fixed determinant
- (several) Multinomial, (skew-)symmetric, and symplectic matrices
- Tucker & Oblique manifold, Kendall's Shape space
- probability simplex, orthogonal and unitary matrices, ...

Concrete Manifold Examples.

Before first run] add Manifolds to install the package.

Load packages with using Manifolds and

- Euclidean space M1 = \mathbb{R}^3 and 2-sphere M2 = Sphere(2)
- ▶ their product manifold $M3 = M1 \times M2$
- A signal of rotations M4 = SpecialOrthogonal(3)^10
- SPDs M5 = SymmetricPositiveDefinite(3) (affine invariant metric)
- a different metric M6 = MetricManifold(M5, LogCholeskyMetric())

Then for any of these

- Generate a point p=rand(M) and a vector X = rand(M; vector_at=p)
- ▶ and for example exp(M, p, X), or in-place exp!(M, q, p, X)

Manopt.jl

Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s, implement initialize_solver!(p, s) and step_solver!(p, s, i) ⇒ an algorithm in the Manopt.jl interface

Highlevel interfaces like gradient_descent(M, f, grad_f) on any manifold M from Manifolds.jl.

All provide debug output, recording, cache & counting capabilities, as well as a library of step sizes and stopping criteria.

Manopt family.

List of Algorithms in Manopt.jl Derivatve Free Nelder-Mead. Particle Swarm. CMA-ES Subgradient-based Subgradient Method, Convex Bundle Method, Proximal Bundle Method Gradient-based Gradient Descent, Conjugate Gradient, Stochastic, Momentum, Nesterov, Averaged, ... Quasi-Newton with (L-)BFGS, DFP, Broyden, SR1,... Levenberg-Marquard **Hessian-based** Trust Regions, Adaptive Regularized Cubics (ARC) nonsmooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point **constrained** Augmented Lagrangian, Exact Penalty, Frank-Wolfe, Interior Point Newton **nonconvex** Difference of Convex Algorithm, DCPPA

윩 manoptjl.org/stable/solvers/

Gradient Descent

For the Rayleigh quotient on \mathbb{S}^{n-1} we have for $p\in\mathbb{S}^{n-1}$

 $\operatorname{cost} f(p) = p^{\mathsf{T}} A p$, and gradient $\nabla f(p) = 2A p$.

But this is not the Riemannian one. For example: $\nabla f(p) \notin T_p \mathcal{M}$. Formally: We need the Riesz representer $Df(p)[X] = \langle \operatorname{grad} f(p), X \rangle_p$.

```
Easier: Let Manopt.jl convert the Euclidean into a Riemannian gradient:

using Manopt, Manifolds

M = Sphere(2); A = Matrix(reshape(1.0:9.0, 3, 3));

f(M,p) = p'*A*p;

\nabla f(M,p) = 2A*p;

p0 = [1.0, 0.0, 0.0];

q = gradient_descent(M, f, \nabla f, p0; objective_type=:Euclidean)

Worke second if we have a Hassian \Sigma^2 f is maximal
```

Works as well if you have a Hessian $\nabla^2 f$ is required.

D NTNU

Illustrating a few Keyword Arguments

Given a manifold M, a cost f(M,p), its Riemannian gradient $grad_f(M,p)$, and a start point p0.

- q = gradient_descent(M, f, grad_f, p0) to perform gradient descent
- ▶ With Euclidean cost f(E,p) and gradient $\nabla f(E, p)$, use for conversion
 - q = gradient_descent(M, f, ∇f , p0; objective_type=:Euclidean)
- print iteration number, cost and change every 10th iterate

- record record=[:Iterate, :Cost, :Change], return_state=true
 Access: get_solver_result(q) and get_record(q)
- modify stop: stopping_criterion = StopAfterIteration(100)
- cache calls cache=(:LRU, [:Cost, :Gradient], 25) (uses LRUCache.jl)
- count calls count=[:Cost, :Gradient] (prints with return_state=true)

The Riemannian Subdifferential

Let \mathcal{C} be a convex set.

The subdifferential of f at $p \in C$ is given by [Ferreira, Oliveira, 2002; Lee, 2003; Udriste, 1994]

$$\partial_{\mathcal{M}} f(\mathcal{p}) \coloneqq ig\{\xi \in \mathcal{T}_{\mathcal{p}}^* \mathcal{M} \, ig| \, f(q) \geq f(\mathcal{p}) + \langle \xi \, , \log_{
ho} q
angle_{\mathcal{p}} \; \; ext{for} \; q \in \mathcal{C} ig\},$$

where

- $\mathcal{T}_{p}^{*}\mathcal{M}$ is the dual space of $\mathcal{T}_{p}\mathcal{M}$, also called cotangent space
- $\langle \cdot, \cdot \rangle_p$ denotes the duality pairing on $\mathcal{T}_p^* \mathcal{M} \times \mathcal{T}_p \mathcal{M}$
- ▶ numerically we use musical isomorphisms $X = \xi^{\flat} \in \mathcal{T}_p \mathcal{M}$ to obtain a subset of $\mathcal{T}_p \mathcal{M}$

The Riemannian DCA in Manopt.jl

[RB, Ferreira, Santos, Souza, 2024]

To solve a problem of a difference of convex (DC) functions

$$\mathop{\mathrm{arg\,\,min}}_{p\in\mathcal{M}} f(p), \qquad f(p) = g(p) - h(p),$$

where g is convex and smooth and h is convex but not necessarily smooth:

```
q = difference_of_convex_algorithm(M, f, g, \partial h, p0; kwargs...)
```

Input: An initial point $p^{(0)} \in \text{dom}(g)$, g and $\partial_{\mathcal{M}}h$ 1: for k = 1, 2, ... until convergence do 2: Take $X^{(k)} \in \partial_{\mathcal{M}}h(p^{(k)})$ 3: Compute $p^{(k+1)} \in \underset{p \in \mathcal{M}}{\arg \min} g(p) - (X^{(k)}, \log_{p^{(k)}} p)_{p^{(k)}}$. 4: end for

 \bigcirc implement f(M, p), g(M, p), and $\partial h(M, p)$.

- efficient sub solver used if grad_g= is set (implement grad_g(M, p))
- sub_state= to specify a solver or sub_problem= for closed-form solution

NTNU

Summary

Manifolds.jl & Manifolds.jl

- ► a high-level interface to define and use Riemannian manifolds
- a library of manifolds and functions defined thereon

Manopt.jl

- ► an interface to define solvers
- a library of algorithms for optimization on manifolds
- several tools to
 - state stopping criteria, debug, record, caching
 - (re)use Euclidean gradients and Hessians \Rightarrow ManifoldDiff.jl

Future work.

What is a Fenchel conjugate on Manifolds?

2 Friday 10.15 in the MathICSE seminar.

- GroupManifolds are currently reworked \Rightarrow LieGroups.jl
- Solve differential equations on manifolds
 > ManifoldDiffEq.jl

Selected References

- Absil, P.-A.; R. Mahony; R. Sepulchre (2008). *Optimization Algorithms on Matrix Manifolds*. Princeton University Press. DOI: 10.1515/9781400830244.
- Axen, S. D.; M. Baran; RB; K. Rzecki (2023). "Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds". *ACM Transactions on Mathematical Software*. Accepted for pulication. DOI: 10.1145/3618296. arXiv: 2106.08777.
- RB (2022). "Manopt.jl: Optimization on Manifolds in Julia". Journal of Open Source Software 7.70, p. 3866. DOI: 10.21105/joss.03866.
- Ξ
- RB; O. P. Ferreira; E. M. Santos; J. C. d. O. Souza (2024). "The difference of convex algorithm on Hadamard manifolds". *Journal of Optimization Theory and Applications*. DOI: 10.1007/s10957-024-02392-8. arXiv: 2112.05250.
- Ξ
- Boumal, N. (2023). An introduction to optimization on smooth manifolds. Cambridge University Press. URL: https://www.nicolasboumal.net/book.

Interested in Numerical Differential Geometry? Join 🏝 numdiffgeo.zulipchat.com!