

Manopt.jl Optimization on Riemannian Manifolds in Julia

Ronny Bergmann

Julia for numerical problems in quantum and solid-state physics CECAM workshop, Lausanne, November 27, 2024.

Optimization on Manifolds

arg min *f*(*p*) *p∈M*

- \blacktriangleright $f: \mathcal{M} \rightarrow \mathbb{R}$ is a (smooth) function
- \blacktriangleright *M* is a Riemannian manifold
- Θ Riemannian optimization

This especially includes

- ▶ nonsmooth problems: *f* is (only) lower semicontinuous
- Θ splitting methods $f(p) = g(p) + h(p)$, where *g* is smooth
- Difference of Convex problems $f(p) = g(p) h(p)$
- ▶ constraints *p ∈ C ⊂ M*

The Rayleigh Quotient

When minimizing the Rayleigh quotient for a symmetric $A \in \mathbb{R}^{n \times n}$

arg min *x∈*R*n\{*0*} x* ^T*Ax ∥x∥* 2

đ Any eigenvector *x ∗* to the smallest EV *λ* is a minimizer \overline{D} no isolated minima and Newton's method diverges Ť Constrain the problem to unit vectors *∥x∥* = 1! **classic** constrained optimization (ALM, EPM, IP Newton, …) **Today** Utilize the geometry of the sphere \Box unconstrained optimization *p∈*S *n−*1 *p* ^T*Ap*

 Σ adapt unconstrained optimization to Riemannian manifolds.

The Generalized Rayleigh Quotient

More general. Find a basis for the space of eigenvectors to $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k$

> $\mathsf{Arg\,min}_{\mathsf{X} \subseteq \mathsf{S} \mathcal{X}(\mathsf{A})} \mathsf{R} \mathsf{X}(\mathsf{A}) := \{ \mathsf{X} \in \mathbb{R}^{n \times k} \, \big| \, \mathsf{X}^{\mathsf{T}} \mathsf{X} = \mathsf{A} \},$ *X∈*St(*n,k*)

֫೨ a problem on the Stiefel manifold St(*n, k*)

 $\sqrt{1}$ Invariant under rotations within a *k*-dim subspace.

 Ω Find the best subspace!

 $\argmin_{\mathbf{X} \in \mathcal{S}} \text{tr}(X^T A X), \qquad \text{Gr}(n, k) := \{ \text{span}(X) \, | \, X \in \text{St}(n, k) \},$ span(*X*)*∈*Gr(*n,k*)

 \triangle a problem on the Grassmann manifold $Gr(n, k) = St(n, k)/O(k)$.

A Riemannian Manifold *M*

A *d*-dimensional Riemannian manifold can be informally defined as a set *M* covered with a "suitable" collection of charts, that identify subsets of ${\cal M}$ with open subsets of \mathbb{R}^d and a continuously varying inner product on the tangent spaces.

A Riemannian Manifold *M*

Notation.

- ▶ Logarithmic map $log_p q = \dot{\gamma}(0; p, q)$
- ▶ Exponential map $\exp_{p} X = \gamma_{p,X}(1)$
- ▶ Geodesic $\gamma(\cdot; p, q)$
- \blacktriangleright Tangent space $\mathcal{T}_p\mathcal{M}$
- \blacktriangleright inner product $(\cdot, \cdot)_p$

Numerics.

exp*^p* and log*^p* maybe not available efficiently/ in closed form

⇒ use a retraction and its inverse instead.

p γ(*·*; *p , q*) *q*

M

log*^p*

X

log*^p p*

exp*^p*

 $\mathcal{T}_p\mathcal{M}$

(Geodesic) Convexity

[Sakai, 1996; Udrişte, 1994]

A set *C ⊂ M* is called (strongly geodesically) convex if for all $p, q \in \mathcal{C}$ the geodesic $\gamma(\cdot; p, q)$ is unique and lies in \mathcal{C} .

A function $f: \mathcal{C} \to \overline{\mathbb{R}}$ is called (geodesically) convex if for all $p, q \in \mathcal{C}$ the composition $f(\gamma(t; p, q)), t \in [0, 1]$, is convex.

ManifoldsBase.jl

Goal. Provide an interface to implement and use Riemannian manifolds.

Interface AbstractManifold to model manifolds

Functions like exp(M, p, X), log(M, p, X) or retract(M, p, X, method).

Decorators for implicit or explicit specification of an embedding, a metric, or a group,

Efficiency by providing in-place variants like exp! (M, q, p, X)

Manifolds.jl

Goal. Provide a library of Riemannian manifolds, that is efficiently implemented and well-documented

Meta. generic implementations for $M^{n \times m}$, $M_1 \times M_2$, vector- and tangent-bundles, esp. *TpM*, or Lie groups

Library. Implemented functions for

- ▶ Circle, Sphere, Torus, Hyperbolic, Projective Spaces, Hamiltonian
- ▶ (generalized, symplectic) Stiefel, Rotations
- ▶ (generalized, symplectic) Grassmann, fixed rank matrices
- ▶ Symmetric Positive Definite matrices, with fixed determinant
- ▶ (several) Multinomial, (skew-)symmetric, and symplectic matrices
- ▶ Tucker & Oblique manifold, Kendall's Shape space
- ▶ probability simplex, orthogonal and unitary matrices, ...

Concrete Manifold Examples.

Before first run] add Manifolds to install the package.

Load packages with **using** Manifolds and

- Euclidean space $M1 = \mathbb{R}^3$ and 2-sphere $M2 =$ Sphere(2)
- \blacktriangleright their product manifold $M_3 = M_1 \times M_2$
- A signal of rotations $M4 = SpecialOrthogonal(3)^10$
- \triangleright SPDs $MS = SymmetricPositiveDefinite(3)$ (affine invariant metric)
- \triangleright a different metric $MS = Metrichanifold(M5, LogCholeskyMetric())$

Then for any of these

- ▶ Generate a point $p = rand(M)$ and a vector $X = rand(M; vector_at=p)$
- \blacktriangleright and for example $\exp(M, p, X)$, or in-place $\exp(M, q, p, X)$

Manopt.jl

Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s, implement initialize_solver!(p, s) and step_solver!(p, s, i) *⇒* an algorithm in the Manopt.jl interface

Highlevel interfaces like gradient_descent(M, f, grad_f) on any manifold M from Manifolds.jl.

All provide debug output, recording, cache & counting capabilities, as well as a library of step sizes and stopping criteria.

Manopt family.

on manoptjl.org [RB, 2022]

List of Algorithms in Manopt.jl

Derivatve Free Nelder-Mead, Particle Swarm, CMA-ES **Subgradient-based** Subgradient Method, Convex Bundle Method, Proximal Bundle Method **Gradient-based** Gradient Descent, Conjugate Gradient, Stochastic, Momentum, Nesterov, Averaged, … Quasi-Newton with (L-)BFGS, DFP, Broyden, SR1,... Levenberg-Marquard

Hessian-based Trust Regions, Adaptive Regularized Cubics (ARC) **nonsmooth** Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point **constrained** Augmented Lagrangian, Exact Penalty, Frank-Wolfe, Interior Point Newton **nonconvex** Difference of Convex Algorithm, DCPPA

manoptjl.org/stable/solvers/

Gradient Descent

For the Rayleigh quotient on \mathbb{S}^{n-1} we have for $p \in \mathbb{S}^{n-1}$

 $\cosh f(p) = p^{\mathsf{T}} A p$, and gradient $\nabla f(p) = 2Ap$ *.*

But this is not the Riemannian one. For example: $\nabla f(p) \notin T_pM$. Formally: We need the Riesz representer $Df(p)[X] = \langle \text{grad } f(p), X \rangle_p$.

```
Easier: Let Manopt. jl convert the Euclidean into a Riemannian gradient:
```

```
using Manopt , Manifolds
M = Sphere(2); A = Matrix(reshape(1.0:9.0, 3, 3));f(M, p) = p' * A * p;\nabla f(M,p) = 2A*p;p0 = [1.0, 0.0, 0.0];
q = gradient descent(M, f, \nablaf, p0; objective type=:Euclidean)
Works as well if you have a Hessian ∇2
f is required.
```
NTNU

Illustrating a few Keyword Arguments

Given a manifold M, a cost $f(M,p)$, its Riemannian gradient grad $f(M,p)$, and a start point p0.

- \blacktriangleright q = gradient descent(M, f, grad f, p0) to perform gradient descent
- ▶ With Euclidean cost f(E,p) and gradient *[∇]*f(E, p), use for conversion
	- q = gradient descent(M, f, ∇ f, p0; objective_type=:Euclidean)
- ▶ print iteration number, cost and change every 10th iterate

```
q = gradient_d \text{descent}(M, f, grad_f, p0);\text{delay}=[:\text{Iteration}, : \text{Cost}, : \text{Change}, 10, "\\ \text{'n''}])
```
- ▶ record record=[:Iterate, :Cost, :Change], return_state=**true** Access: get solver result(q) and get record(q)
- ▶ modify stop: stopping_criterion = StopAfterIteration(100)
- ▶ cache calls cache=(:LRU, [:Cost, :Gradient], 25) (uses LRUCache.jl)
- ▶ count calls count=[:Cost, :Gradient] (prints with return_state=**true**)

The Riemannian Subdifferential

Let C be a convex set.

The subdifferential of f at $p \in C$ is given by Ferreira, Oliveira, 2002; Lee, 2003; Udriște, 1994]

$$
\partial_{\mathcal{M}}f(p)\coloneqq\big\{\xi\in\mathcal{T}_p^*\mathcal{M}\,\big|\,f(q)\geq f(p)+\langle\xi\,,\log_pq\rangle_p\ \text{ for }q\in\mathcal{C}\big\},
$$

where

- ▶ *T ∗ ^pM* is the dual space of *TpM*, also called cotangent space
- ▶ $\langle \cdot, \cdot \rangle_p$ denotes the duality pairing on $\mathcal{T}_p^*\mathcal{M} \times \mathcal{T}_p\mathcal{M}$
- ▶ numerically we use musical isomorphisms $X = \xi^{\flat} \in \mathcal{T}_{p} \mathcal{M}$ to obtain a subset of *TpM*

The Riemannian DCA in Manopt.jl

[RB, Ferreira, Santos, Souza, 2024] To solve a problem of a difference of convex (DC) functions

$$
\argmin_{\rho \in \mathcal{M}} f(\rho), \qquad f(\rho) = g(\rho) - h(\rho),
$$

where g is convex and smooth and h is convex but not necessarily smooth:

q = difference_of_convex_algorithm(M, f, g, *∂h*, p0; kwargs...)

Input: An initial point $p^{(0)} \in \text{dom}(g)$, *g* and $\partial_{\mathcal{M}}h$

1: **for** *k* = 1*,* 2*, . . .* until convergence **do**

2: Take
$$
X^{(k)} \in \partial_M h(p^{(k)})
$$

3: Compute
$$
p^{(k+1)} \in \arg\min_{p \in \mathcal{M}} g(p) - (X^{(k)}, \log_{p^{(k)}} p)_{p^{(k)}}.
$$

4: **end for**

- ˣ implement f(M, p), g(M, p), and *∂h*(M, p).
- \triangleright efficient sub solver used if $grad_g =$ is set (implement $grad_g(M, p)$)
- ▶ sub_state= to specify a solver or sub_problem= for closed-form solution

Summary

Manifolds.jl & Manifolds.jl

- ▶ a high-level interface to define and use Riemannian manifolds
- ▶ a library of manifolds and functions defined thereon

Manopt.jl

- \blacktriangleright an interface to define solvers
- ▶ a library of algorithms for optimization on manifolds
- \blacktriangleright several tools to
	- \triangleright state stopping criteria, debug, record, caching
	- ▶ (re)use Euclidean gradients and Hessians *⇒* ManifoldDiff.jl

Future work.

▶ What is a Fenchel conjugate on Manifolds?

SF Friday 10.15 in the MathICSE seminar.

- ▶ GroupManifolds are currently reworked *⇒* LieGroups.jl
- Solve differential equations on manifolds \Rightarrow ManifoldDiffEq.jl

 \bullet **NTNU**

Selected References

- Õ Axen, S. D.; M. Baran; RB; K. Rzecki (2023). "Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds". *ACM Transactions on Mathematical Software*. Accepted for pulication. DOI: 10.1145/3618296. arXiv: 2106.08777.
- Õ RB (2022). "Manopt.jl: Optimization on Manifolds in Julia". *Journal of Open Source Software* 7.70, p. 3866. DOI: 10.21105/joss.03866.
- RB; O. P. Ferreira; E. M. Santos; J. C. d. O. Souza (2024). "The difference of convex algorithm on Hadamard manifolds". Journal of Optimization Theory and Applications. DOI: 10.1007/s10957-024-02392-8. arXiv: 2112.05250.
- Õ Boumal, N. (2023). *An introduction to optimization on smooth manifolds*. Cambridge University Press. URL: https://www.nicolasboumal.net/book.

Interested in Numerical Differential Geometry? Join languardiffgeo.zulipchat.com! Ǥड ronnybergmann.net/talks/2024-Lausanne-Manopt.pdf