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Optimization on Manifolds
argmin
p∈M

f(p)

▶ f : M → R is a (smooth) function
▶ M is a Riemannian manifold

Riemannian optimization

This especially includes
▶ nonsmooth problems: f is (only) lower semicontinuous

splitting methods f(p) = g(p) + h(p), where g is smooth
▶ Difference of Convex problems f(p) = g(p)− h(p)
▶ constraints p ∈ C ⊂ M
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The Rayleigh Quotient
When minimizing the Rayleigh quotient for a symmetric A ∈ Rn×n

argmin
x∈Rn\{0}

xTAx
∥x∥2

Any eigenvector x∗ to the smallest EV λ is a minimizer
no isolated minima and Newton’s method diverges
Constrain the problem to unit vectors ∥x∥ = 1!

classic constrained optimization (ALM, EPM, IP Newton, …)
Today Utilize the geometry of the sphere

unconstrained optimization argmin
p∈Sn−1

pTAp

adapt unconstrained optimization to Riemannian manifolds.
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The Generalized Rayleigh Quotient
More general. Find a basis for the space of eigenvectors to
λ1 ≤ λ2 ≤ · · · ≤ λk:

argmin
X∈St(n,k)

tr(XTAX), St(n, k) :=
{
X ∈ Rn×k ∣∣ XTX = I

}
,

a problem on the Stiefel manifold St(n, k)

Invariant under rotations within a k-dim subspace.
Find the best subspace!

argmin
span(X)∈Gr(n,k)

tr(XTAX), Gr(n, k) :=
{
span(X)

∣∣ X ∈ St(n, k)
}
,

a problem on the Grassmann manifold Gr(n, k) = St(n, k)/O(k).
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A Riemannian Manifold M

A d-dimensional Riemannian manifold can be informally
defined as a set M covered with a “suitable” collection of
charts, that identify subsets of M with open subsets of Rd

and a continuously varying inner product on the tangent
spaces.

[Absil, Mahony, and Sepulchre 2008]
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A Riemannian Manifold M
Notation.
▶ Logarithmic map logp q = γ̇(0;p,q)
▶ Exponential map expp X = γp,X(1)
▶ Geodesic γ(·;p , q)
▶ Tangent space TpM
▶ inner product (· , ·)p

Numerics.
expp and logp maybe not available
efficiently/ in closed form
⇒ use a retraction and its inverse instead.

γ(·;p , q)p q

expp
logp

X

logp p

TpM

M
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(Geodesic) Convexity

[Sakai 1996; Udrişte 1994]

A set C ⊂ M is called (strongly geodesically) convex
if for all p,q ∈ C the geodesic γ(·;p , q) is unique and lies in C.

A function f : C → R is called (geodesically) convex
if for all p,q ∈ C the composition f(γ(t;p , q)), t ∈ [0,1], is convex.
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ManifoldsBase.jl

[Axen, Baran, RB, and Rzecki 2023]
Goal. Provide an interface to implement and use Riemannian manifolds.

Interface AbstractManifold to model manifolds

Functions like exp(M, p, X), log(M, p, X) or retract(M, p, X, method).

Decorators for implicit or explicit specification of an embedding, a
metric, or a group,

Efficiency by providing in-place variants like exp!(M, q, p, X)
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Manifolds.jl

[Axen, Baran, RB, and Rzecki 2023]

Goal. Provide a library of Riemannian manifolds,
that is efficiently implemented and well-documented

Meta. generic implementations for Mn×m, M1 ×M2,
vector- and tangent-bundles, esp. TpM, or Lie groups

Library. Implemented functions for
▶ Circle, Sphere, Torus, Hyperbolic, Projective Spaces, Hamiltonian
▶ (generalized, symplectic) Stiefel, Rotations
▶ (generalized, symplectic) Grassmann, fixed rank matrices
▶ Symmetric Positive Definite matrices, with fixed determinant
▶ (several) Multinomial, (skew-)symmetric, and symplectic matrices
▶ Tucker & Oblique manifold, Kendall’s Shape space
▶ probability simplex, orthogonal and unitary matrices, …
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Concrete Manifold Examples.
Before first run ] add Manifolds to install the package.
Load packages with using Manifolds and
▶ Euclidean space M1 = R^3 and 2-sphere M2 = Sphere(2)
▶ their product manifold M3 = M1 × M2
▶ A signal of rotations M4 = SpecialOrthogonal(3)^10
▶ SPDs M5 = SymmetricPositiveDefinite(3) (affine invariant metric)
▶ a different metric M6 = MetricManifold(M5, LogCholeskyMetric())

Then for any of these
▶ Generate a point p=rand(M) and a vector X = rand(M; vector_at=p)
▶ and for example exp(M, p, X), or in-place exp!(M, q, p, X)
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Manopt.jl
Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s,
implement initialize_solver!(p, s) and step_solver!(p, s, i)
⇒ an algorithm in the Manopt.jl interface

Highlevel interfaces like gradient_descent(M, f, grad_f)
on any manifold M from Manifolds.jl.
All provide debug output, recording, cache & counting capabilities,
as well as a library of step sizes and stopping criteria.

Manopt family.
manoptjl.org

[RB 2022]
manopt.org

[Boumal, Mishra, Absil, and Sepulchre 2014]
pymanopt.org

[Townsend, Koep, and Weichwald 2016]

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org
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List of Algorithms in Manopt.jl
Derivatve Free Nelder-Mead, Particle Swarm, CMA-ES
Subgradient-based Subgradient Method, Convex Bundle Method,

Proximal Bundle Method
Gradient-based Gradient Descent, Conjugate Gradient, Stochastic,

Momentum, Nesterov, Averaged, …
Quasi-Newton with (L-)BFGS, DFP, Broyden, SR1,...
Levenberg-Marquard

Hessian-based Trust Regions, Adaptive Regularized Cubics (ARC)
nonsmooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point
constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe,

Interior Point Newton
nonconvex Difference of Convex Algorithm, DCPPA

manoptjl.org/stable/solvers/

https://www.manoptjl.org/stable/solvers/
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Gradient Descent
For the Rayleigh quotient on Sn−1 we have for p ∈ Sn−1

cost f(p) = pTAp, and gradient ∇f(p) = 2Ap.

But this is not the Riemannian one. For example: ∇f(p) /∈ TpM.
Formally: We need the Riesz representer Df(p)[X] = ⟨grad f(p), X⟩p.

Easier: Let Manopt.jl convert the Euclidean into a Riemannian gradient:
using Manopt, Manifolds
M = Sphere(2); A = Matrix(reshape(1.0:9.0, 3, 3));
f(M,p) = p'*A*p;
∇f(M,p) = 2A*p;
p0 = [1.0, 0.0, 0.0];
q = gradient_descent(M, f, ∇f, p0; objectiv_type=:Euclidean)

Works as well if you have a Hessian ∇2f is required.
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Illustrating a few Keyword Arguments
Given a manifold M, a cost f(M,p), its Riemannian gradient grad_f(M,p),
and a start point p0.
▶ q = gradient_descent(M, f, grad_f, p0) to perform gradient descent
▶ With Euclidean cost f(E,p) and gradient ∇f(E, p), use for conversion

q = gradient_descent(M, f, ∇f, p0; objective_type=:Euclidean)

▶ print iteration number, cost and change every 10th iterate
q = gradient_descent(M, f, grad_f, p0;

debug=[:Iteration , :Cost, :Change, 10, "\n"]
)

▶ record record=[:Iterate, :Cost, :Change], return_state=true
Access: get_solver_result(q) and get_record(q)

▶ modify stop: stopping_criterion = StopAfterIteration(100)
▶ cache calls cache=(:LRU, [:Cost, :Gradient], 25) (uses LRUCache.jl)
▶ count calls count=[:Cost, :Gradient] (prints with return_state=true)
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The Riemannian Subdifferential

Let C be a convex set.
The subdifferential of f at p ∈ C is given by [O. Ferreira and Oliveira 2002; Lee 2003; Udrişte 1994]

∂Mf(p) :=
{
ξ ∈ T ∗

pM
∣∣ f(q) ≥ f(p) + ⟨ξ , logp q⟩p for q ∈ C

}
,

where
▶ T ∗

pM is the dual space of TpM, also called cotangent space
▶ ⟨· , ·⟩p denotes the duality pairing on T ∗

pM×TpM
▶ numerically we use musical isomorphisms X = ξ♭ ∈ TpM to obtain a

subset of TpM
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The Riemannian DCA in Manopt.jl
[RB, O. P. Ferreira, Santos, and Souza 2024]

To solve a problem of a difference of convex (DC) functions

argmin
p∈M

f(p), f(p) = g(p)− h(p),

where g is convex and smooth and h is convex but not necessarily smooth:
q = difference_of_convex_algorithm(M, f, g, ∂h, p0; kwargs...)

Input: An initial point p(0) ∈ dom(g), g and ∂Mh
1: for k = 1,2, . . . until convergence do
2: Take X(k) ∈ ∂Mh(p(k))
3: Compute p(k+1) ∈ argmin

p∈M
g(p)−

(
X(k) , logp(k) p

)
p(k) .

4: end for
implement f(M, p), g(M, p), and ∂h(M, p).

▶ efficient sub solver used if grad_g= is set (implement grad_g(M, p))
▶ sub_state= to specify a solver or sub_problem= for closed-form solution
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Summary
Manifolds.jl & Manifolds.jl
▶ provide a high-level interface for defining manifolds
▶ offer a library of manifolds and functions defined thereon

Manopt.jl
▶ provides an interface to define solvers
▶ offers a library of algorithms for optimization on manifolds
▶ offers several tools to

▶ state stopping criteria, debug, record, caching
▶ (re)use Euclidean gradients and Hessians

Future work.
▶ What is a Fenchel conjugate on Manifolds?

Friday 10.15 in the MathICSE seminar.
▶ GroupManifolds are currently reworked ⇒ LieGroups.jl.
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