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Nonsmooth Optimization on Riemannian Manifolds

We are looking for numerical algorithms to find

argmin
p∈M

f(p)

where
▶ M is a Riemannian manifold
▶ f :M→ R is a function

f might be nonsmooth and/or nonconvex
M might be high-dimensional
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A Riemannian Manifold M

A d-dimensional Riemannian manifold can be informally
defined as a set M covered with a “suitable” collection of
charts, that identify subsets of M with open subsets of Rd

and a continuously varying inner product on the tangent
spaces.

[Absil, Mahony, and Sepulchre 2008]
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A Riemannian Manifold M
Notation.
▶ Logarithmic map logp q = γ̇(0;p,q)
▶ Exponential map expp X = γp,X(1)
▶ Geodesic γ(·;p , q)
▶ Tangent space TpM
▶ inner product (· , ·)p

Numerics.
expp and logp maybe not available
efficiently/ in closed form
⇒ use a retraction and its inverse instead.

γ(·;p , q)p q

expp
logp

X

logp p

TpM

M
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(Geodesic) Convexity

[Sakai 1996; Udrişte 1994]

A set C ⊂M is called (strongly geodesically) convex
if for all p,q ∈ C the geodesic γ(·;p , q) is unique and lies in C.

A function f : C → R is called (geodesically) convex
if for all p,q ∈ C the composition f(γ(t;p , q)), t ∈ [0,1], is convex.
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The Riemannian Subdifferential

Let C be a convex set.
The subdifferential of f at p ∈ C is given by [O. Ferreira and Oliveira 2002; Lee 2003; Udrişte 1994]

∂Mf(p) :=
{
ξ ∈ T ∗pM

∣∣ f(q) ≥ f(p) + ⟨ξ , logp q⟩p for q ∈ C
}
,

where
▶ T ∗pM is the dual space of TpM, also called cotangent space
▶ ⟨· , ·⟩p denotes the duality pairing on T ∗pM×TpM
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The Riemannian Convex
Bundle Method
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The ε-Subdifferential

Let ε > 0.
The ε−subdifferential of a convex function f : Rn → R reads

∂εf(x) =
{
s ∈ Rn ∣∣ f(y) ≥ f(x) + sT(y− x)− ε for all y ∈ Rn}

Let ε > 0 and C ⊂M be a convex set.
The ε−subdifferential of a convex function f : C → R reads

∂εf(x) =
{
X ∈ TpM

∣∣ f(q) ≥ f(p) + (X , logp q)− ε for all q ∈ C
}

Clearly in both cases ∂f(x) = ∂0f(x) ⊂ ∂εf(x)
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The Riemannian Convex Bundle Method
[RB, Herzog, and Jasa 2024]

▶ Given f : C → R on a (geodesically) convex set C ⊂M
▶ collect

▶ subgradients Xq(k) ∈ ∂f(q(k))

▶ stabilisation centers p(k) (“best” iterates)
▶ use this information to

▶ determine the next descent direction d(k) ∈ Tp(k)M
by solving a QP in Tp(k)M

▶ where d(k) ∈ ∂c(k)f(p(k))

▶ we stop when both
▶ the approximation ∂c(k)f(p(k)) of ∂f(p(k)) is “good enough”
▶ ∥d(k)∥ is “small enough”
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Aproximating the ε-Subdifferential
For f : Rn → R, given x(0), . . . , x(k) ∈ Rn, and s(j) ∈ ∂f(x(j)),
define the linearization errors

e(k)j := f(x(k))− f(x(j))− (s(j))T(x(k) − x(j)), j = 0, . . . , k.

Then (Geiger and Kanzow 2002, Theorem 6.68)

s(j) ∈ ∂e(k)j
f(x(k))

and we can characterize an inner approximation G(k)
ε ⊆ ∂εf(x(k)) as

G(k)
ε :=

{
k∑

j=0

λjs(j)
∣∣∣∣∣

k∑
j=0

λj e
(k)
j ≤ ε,

k∑
j=0

λj = 1, λj ≥ 0 for all j = 0, . . . , k

}

Challenge on manifolds.
How can we take into account curvature in the error terms?
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Curvature Correction

Let Ω ∈ R be an upper bound on the curvature. Define
[RB, Herzog, and Jasa 2024]

c(k)j := f(p(k))− f(p(j))−
(
Xp(j) , logp(j) p(k)

)
if Ω ≤ 0,

c(k)j := f(p(k))− f(p(j)) + ∥Xp(j)∥∥logp(j) p(k)∥ if Ω > 0.

Then we get

G(k)
ε :=

{
k∑

j=0

λjPp(k)←p(j)Xp(j)

∣∣∣∣∣
k∑

j=0

λj e
(k)
j ≤ ε,

k∑
j=0

λj = 1, λj ≥ 0, j = 0, . . . , k

}

with G(k)
ε ⊆ ∂εf(p(k)), and Pp(k)←p(j)Xp(j) ∈ ∂c(k)j

f(p(k)).
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The Riemannian Subproblem
Let k ∈ N and j ∈ {0, . . . , k} = J(k) and Xp(j) ∈ ∂f(p(j)), p(j) ∈ RnC
For a coefficients λj ≥ 0 with

∑
j λj = 1, we have∑

j∈J(k)
λjPp(k)←q(j)Xq(j) ∈ ∂εf(p(k)) if and only if

∑
j∈J(k)

λjc
(k)
j ≤ ε

Solving the constrained quadratic problem

argmin
λ∈R|J(k)|

1
2

∥∥∥∥∥∑
j∈J(k)

λjPp(k)←q(j)Xq(j)

∥∥∥∥∥
2

+
∑
j∈J(k)

λje
(k)
j c(k)j

s. t.
∑
j∈J(k)

λj = 1, λj ≥ 0 for all j ∈ J(k)

yields the new search direction
d(k) := −

∑
j∈J(k)

λjPp(k)←q(j)Xq(j) .
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The Riemannian Convex Bundle Method
Input: p(0) = q(0) ∈

Rn

C, g(0) = Xp0 ∈ ∂f(p(0)), m ∈ (0,1),
ε(0) = e(0)c(0) = 0, J(0) = {0}, and k = 0.

1: while not converged do
2: Set k = k+ 1
3: Compute a solution λ(k) ∈ R|J(k)| of the subproblem.
4: Set g(k) :=

∑
j∈J(k)

λ
(k)
j Pp(k)←q(j)Xq(j) , ε(k) :=

∑
j∈J(k)

λ
(k)
j e(k)j c(k)j ,

d(k) := −g(k), ξ(k) := −∥g(k)∥2 − ε(k),

5: Set q(k+1) =

p(k) + d(k)

expp(k) d(k) 1 and take Xq(k+1) ∈ ∂f(q(k+1)),
6: If f(q(k+1)) ≤ f(p(k)) +mξ(k) set p(k+1) = q(k+1) else p(k+1) = p(k)

7: Update J(k+1) = {j ∈ J(k) |λ(k)
j > 0} ∪ {k+ 1}, and

e(k+1)j

c(k+1)j
8: end while

Output: p(k∗) from the final k∗ ∈ N.
1Perform a backtracking if q(k+1) /∈ int(dom f) or equal to p(k)
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Convergence

Theorem (Geiger and Kanzow 2002, Theorem 6.80)
Let the solution set S = {x∗ ∈ Rn | f(x∗) = infx∈Rn f(x)} of the
minimization problem be nonempty. Then every sequence {x(k)} generated
by the bundle method algorithm converges to a minimizer of f.

On Hadamard manifolds (Ω ≤ 0) we have the analogous, if
[RB, Herzog, and Jasa 2024]

1. the backtracking step size t(k) > m for all k ≥ k∗, if a finite number
of serious steps k∗ occur

2. no accumulation point of p(k) is allowed to lie on the boundary of C
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Numerical Examples
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Manopt.jl
Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s,
implement initialize_solver!(p, s) and step_solver!(p, s, i)
⇒ an algorithm in the Manopt.jl interface

Highlevel interfaces like gradient_descent(M, f, grad_f)
on any manifold M from Manifolds.jl.
All provide debug output, recording, cache & counting capabilities,
as well as a library of step sizes and stopping criteria.

Manopt family.
manoptjl.org

[RB 2022]
manopt.org

[Boumal, Mishra, Absil, and Sepulchre 2014]
pymanopt.org

[Townsend, Koep, and Weichwald 2016]

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org
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List of Algorithms in Manopt.jl
Derivatve Free Nelder-Mead, Particle Swarm, CMA-ES
Subgradient-based Subgradient Method, Convex Bundle Method,

Proximal Bundle Method
Gradient-based Gradient Descent, Conjugate Gradient, Stochastic,

Momentum, Nesterov, Averaged, …
Quasi-Newton with (L-)BFGS, DFP, Broyden, SR1,...
Levenberg-Marquard

Hessian-based Trust Regions, Adaptive Regularized Cubics (ARC)
nonsmooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point
constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe
nonconvex Difference of Convex Algorithm, DCPPA

manoptjl.org/stable/solvers/

https://www.manoptjl.org/stable/solvers/


16

The Convex Bundle Method in Manopt.jl
In Manopt.jl a solver call looks like2

p = convex_bundle_method(M, f, ∂f, p0;
diameter = δ, k_max = Ω, m = 10−3, kwargs...

)

where
▶ M is a Riemannian manifold
▶ f is the objective function
▶ ∂f is a subgradient of the objective function
▶ p0 is an initial point on the manifold

The default stopping criterion for the algorithm is set to

−ξ(k) ≤ 10−8.

2full documentation: manoptjl.org/stable/solvers/convex_bundle_method/

https://manoptjl.org/stable/solvers/convex_bundle_method/
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Denoising a Signal on Hyperbolic Space H2

▶ signal q ∈M, (H2)n, n = 496
▶ noisy signal q̄ ∈M, q̄i = expqi

Xi,
σ = 0.1

▶ ROF Model:
argmin

p∈M

1
n
dM(p,q)2

+ α
n−1∑
i=1

dH2(pi,pi+1)

▶ Setting α = 0.05 yields
reconstruction p∗.

▶ in RCBM: set diam(dom f) = b > 0.
(in practice: b =floatmax()≈ 10308)
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Algorithms for Denoising a Signal

▶ Riemannian Convex Bundle Method (RCBM) [RB, Herzog, and Jasa 2024]

▶ Proximal Bundle Algorithm (PBA) [Hoseini Monjezi, Nobakhtian, and Pouryayevali 2021]

▶ Subgradient Method (SGM) [O. Ferreira and Oliveira 1998]

▶ Cyclic Proximal Point Algorithm (CPPA) [Bačák 2014]

Algorithm Iter. Time (sec.) Objective Error
RCBM 3417 51.393 1.7929× 10−3 3.3194× 10−4

PBA 15000 102.387 1.8153× 10−3 4.3874× 10−4
SGM 15000 99.604 1.7920× 10−3 3.3080× 10−4

CPPA 15000 94.200 1.7928× 10−3 3.3230× 10−4
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The Riemanniann Median on Sd

▶ Consider the d−dimensional sphere M = Sd

▶ p̄ north pole
▶ Br(p) (geodesic) ball around p with radius r.
▶ n = 1000 Gaussian random data points q(1), . . . ,q(n) ∈ Bπ

8
(p̄)

▶ Riemannian median on Bπ
8
(p̄):

f(p) =


1
n

n∑
j=1

dM(p,q(j)) if p ∈ Bπ
8
(p̄),

+∞ otherwise.

Solve
p∗ := argmin

p∈Sd
f(p)

for different manifold-dimensions d.
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Algorithms for the Riemanniann Median on Sd

RCBM PBA
Dimension Iter. Time (sec.) Objective Iter. Time (sec.) Objective

2 19 6.50× 10−3 0.19289 20 5.30× 10−3 0.19289
4 28 1.01× 10−2 0.19881 23 5.99× 10−3 0.19881
32 58 2.29× 10−2 0.19576 28 1.13× 10−2 0.19576

1024 48 3.91× 10−1 0.19775 40 3.31× 10−1 0.19775
32768 43 7.54 0.19290 21 4.16 0.19290

SGM
Dimension Iter. Time (sec.) Objective

2 5000 1.14 0.19289
4 3270 8.09× 10−1 0.19881
32 5000 2.18 0.19576

1024 122 9.75× 10−1 0.19775
32768 172 5.25× 101 0.19290
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The Riemannian Difference of
Convex Algorithm



21

Difference of Convex

We aim to solve
argmin

p∈M
f(p)

where
▶ M is a Riemannian manifold
▶ f :M→ R is a difference of convex function, i. e. of the form

f(p) = g(p)− h(p)

▶ g,h :M→ R are convex, lower semicontinuous, and proper
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The Euclidean DCA
Idea 1. At xk, approximate h(x) by its affine minorization

hk(x) := h(x(k)) + ⟨x− x(k), y(k)⟩ for some y(k) ∈ ∂h(xk)

⇒ iteratively minimize g(x)− hk(x) = g(x)− h(x(k))− ⟨x− x(k), y(k)⟩

Idea 2. Using duality theory finding a new y(k) ∈ ∂h(x(k)) is equivalent to

y(k) ∈ argmin
y∈Rn

{
h∗(y)− g∗(y(k−1))− ⟨y− y(k−1), x(k)⟩

}
Idea 3. Reformulate 2 using a proximal map ⇒ DCPPA

on manifolds this was done in [Almeida, Neto, Oliveira, and Souza 2020; Souza and Oliveira 2015]

In the Euclidean case, all three models are equivalent.
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A Fenchel Duality on a Hadamard Manifold
Let
▶ TM =

⋃̇
p
TpM denote the tangent bundle

▶ analogously T∗M denotes the cotangent bundle
▶ M be a Hadamard manifold (non-positive sectional curvature).

Definition [Silva Louzeiro, RB, and Herzog 2022]

Let f :M→ R.
The Fenchel conjugate of f is the function f ∗ : T ∗M→ R defined by

f ∗(p, ξ) := sup
q∈M

{
⟨ξ, logp q⟩ − f(q)

}
, (p, ξ) ∈ T ∗M.
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The Dual Difference of Convex Problem
Given the Difference of Convex problem

argmin
p∈M

g(p)− h(p)

and the Fenchel duals g∗ and h∗,
we can state the dual difference of convex problem as

[RB, O. P. Ferreira, Santos, and Souza 2024]

argmin
(p,ξ)∈T∗M

h∗(p, ξ)− g∗(p, ξ).

On M = Rn this indeed simplifies to the classical dual problem.

Theorem. [RB, O. P. Ferreira, Santos, and Souza 2024]

inf
(q,X)∈T ∗M

{
h∗(q, X)− g∗(q, X)

}
= inf

p∈M
{g(p)− h(p)} .
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The Dual Difference of Convex Problem

The primal and dual Difference of Convex problem

argmin
p∈M

g(p)− h(p) and argmin
(p,ξ)∈T∗M

h∗(p, ξ)− g∗(p, ξ)

are equivalent in the following sense.

Theorem. [RB, O. P. Ferreira, Santos, and Souza 2024]

If p∗ is a solution of the primal problem, then (p∗, ξ∗) ∈ T∗M is a solution
for the dual problem for all ξ∗ ∈ ∂Mh(p∗) ∩ ∂Mg(p∗).
If (p∗, ξ∗) ∈ T∗M is a solution of the dual problem for some
ξ∗ ∈ ∂Mh(p∗) ∩ ∂Mg(p∗), then p∗ is a solution of the primal problem.
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Derivation of the Riemannian DCA
We consider the first order Taylor approximation of h at some point p(k):
With ξ ∈ ∂h(p(k)) we set

hk(p) := h(p(k)) + ⟨ξ , logp(k) p⟩p(k)

Using musical isomorphisms we identify X = ξ♯ ∈ TpM,
where we call X a subgradient. Locally hk minorizes h, i. e.

hk(q) ≤ h(q) locally around p(k)

⇒ Use −hk(p) as upper bound for −h(p) in f = g− h.

Note. On Rn the function hk is linear.
On a manifold hk is nonlinear and not even necessarily convex, even on a
Hadamard manifold.
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The Riemannian DC Algorithm
[RB, O. P. Ferreira, Santos, and Souza 2024]

Input: An initial point p(0) ∈ dom(g), g and ∂Mh
1: Set k = 0.
2: while not converged do
3: Take X(k) ∈ ∂Mh(p(k))
4: Compute the next iterate p(k+1) as

p(k+1) ∈ argmin
p∈M

g(p)−
(
X(k) , logp(k) p

)
p(k) . (∗)

5: Set k← k+ 1
6: end while

Note. In general the subproblem (∗) can not be solved in closed form.
But an approximate solution yields a good candidate.
For example: Given g, p(k), and X(k) and grad g ⇒ Gradient descent.
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Convergence of the Riemannian DCA
Let {p(k)}k∈N and {X(k)}k∈N be the iterates and subgradients of the RDCA.
Theorem. [RB, O. P. Ferreira, Santos, and Souza 2024]

If p̄ is a cluster point of {p(k)}k∈N, then p̄ ∈ dom(g) and there exists a
cluster point X̄ of {X(k)}k∈N s. t. X̄ ∈ ∂g(p̄) ∩ ∂h(p̄).
⇒ Every cluster point of {p(k)}k∈N, if any, is a critical point of f.

Proposition. [RB, O. P. Ferreira, Santos, and Souza 2024]

Let g be σ-strongly (geodesically) convex. Then

f(p(k+1)) ≤ f(p(k))− σ

2
d2(p(k),p(k+1))

and
∞∑
k=0

d2(p(k),p(k+1)) <∞, so in particular lim
k→∞

d(p(k),p(k+1)) = 0.
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A Numerical Example
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The Difference of Convex Algorithm in Manopt.jl
The algorithm is implemented and released in Julia using Manopt.jl3.
It can be used with any manifold from Manifolds.jl

A solver call looks like
q = difference_of_convex_algorithm(M, f, g, ∂h, p0)

where one has to implement f(M, p), g(M, p), and ∂h(M, p).

▶ a sub problem is generated if keyword grad_g= is set
▶ an efficient version of its cost and gradient is provided
▶ you can specify the sub-solver using sub_state=

to also set up the specific parameters of your favourite algorithm

3see https://manoptjl.org/stable/solvers/difference_of_convex/

https://manoptjl.org/stable/solvers/difference_of_convex/
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Rosenbrock and First Order Methods
Problem. We consider the classical Rosenbrock example4

argmin
x∈R2

a
(
x21 − x2

)2
+
(
x1 − b

)2
,

where a,b > 0, usually b = 1 and a≫ b, here: a = 2 · 105.

Known Minimizer x∗ =
(

b
b2
)

with cost f(x∗) = 0.

Goal. Compare first-order methods, e. g. using the (Euclidean) gradient

∇f(x) =
(
4a(x21 − x2)
−2a(x21 − x2)

)
+

(
2(x1 − b)

0

)

4available online in ManoptExamples.jl

https://juliamanifolds.github.io/ManoptExamples.jl/stable/examples/Difference-of-Convex-Rosenbrock/
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A “Rosenbrock-Metric” on R2

In our Riemannian framework, we can introduce a new metric on R2 as

Gp :=

(
1+ 4p21 −2p1
−2p1 1

)
, with inverse G−1p =

(
1 2p1
2p1 1+ 4p21

)
.

We obtain (X , Y)p = XTGpY

The exponential and logarithmic map are given as

expp(X) =
(

p1 + X1
p2 + X2 + X21

)
, logp(q) =

(
q1 − p1

q2 − p2 − (q1 − p1)2
)
.

Manifolds.jl:
Implement these functions on MetricManifold(R^2, RosenbrockMetric()).



32

The Riemannian Gradient w.r.t. the new Metric

Let f :M→ R. Given the Euclidean gradient ∇f(p), its Riemannian
gradient grad f :M→ TM is given by

grad f(p) = G−1p ∇f(p).

While we could implement this denoting ∇f(p) =
(
f ′

1(p) f ′

2(p)
)T using〈

grad f(q), logq p
〉
q
= (p1 − q1)f

′

1(q) + (p2 − q2 − (p1 − q1)2)f
′

2(q),

but it is automatically done in Manopt.jl.
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The Experiment Setup
Algorithms. We now compare

1. The Euclidean gradient descent algorithm on R2,
2. The Riemannian gradient descent algorithm on M,
3. The Difference of Convex Algorithm on R2,
4. The Difference of Convex Algorithm on M.

For DCA third we split f into f(x) = g(x)− h(x) with

g(x) = a
(
x21 − x2

)2
+ 2

(
x1 − b

)2 and h(x) =
(
x1 − b

)2
.

Initial point. p0 = 1
10

(
1
2

)
with cost f(p0) ≈ 7220.81.

Stopping Criterion.
dM(p(k),p(k−1)) < 10−16 or ∥grad f(p(k))∥p < 10−16.
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Results

100 101 102 103 104 105 106 107
10−16

10−10

10−4

102

Iter. k

f(p(k))
Euclidean GD Euclidan DCA

Riemannian GD Riemannian DCA

Algorithm Runtime (sec.) # Iterations
Euclidean GD 305.567 53 073 227
Euclidean DCA 58.268 50 588
Riemannian GD 18.894 2 454 017
Riemannian DCA 7.704 2 459
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Summary
▶ Introduced the Convex Bundle Method on manifolds to solve

argmin
p∈M

f(p)

Provide an inner approximation of ∂εf(p)
A quadratic sub problem in a tangent space
Convergence of the Method on Hadamard manifolds

▶ Introduced the Difference of Convex Algorithm to solve

argmin
p∈M

g(p)− h(p)

Relation to Fenchel Duality on Hadamard manifolds
Convergence on Hadamard manifolds
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