
N
or

ge
s

te
kn

isk
-n

at
ur

vi
te

ns
ka

pe
lig

e
un

iv
er

sit
et

Nonsmooth Optimization on
Riemannian Manifolds in Manopt.jl
Ronny Bergmann

33rd European Conference on Operational Research (Euro) 2024
Software for Optimization — Optimization Frameworks
Copenhagen, July 3, 2024.



2

The Rayleigh Quotient
When minimizing the Rayleigh quotient for a symmetric A ∈ Rn×n

argmin
x∈Rn\{0}

xTAx
∥x∥2

Any eigenvector x∗ to the smallest EV λ is a minimizer
no isolated minima and Newton’s method diverges
Constrain the problem to unit vectors ∥x∥ = 1!

classic constrained optimization (ALM, EPM,...)
Today Utilize the geometry of the sphere

unconstrained optimization argmin
p∈Sn−1

pTAp

adapt unconstrained optimization to Riemannian manifolds.



3

The Generalized Rayleigh Quotient
More general. Find a basis for the space of eigenvectors to
λ1 ≤ λ2 ≤ · · · ≤ λk:

argmin
X∈St(n,k)

tr(XTAX), St(n, k) :=
{
X ∈ Rn×k ∣∣ XTX = I

}
,

a problem on the Stiefel manifold St(n, k)

Invariant under rotations within a k-dim subspace.
Find the best subspace!

argmin
span(X)∈Gr(n,k)

tr(XTAX), Gr(n, k) :=
{
span(X)

∣∣ X ∈ St(n, k)
}
,

a problem on the Grassmann manifold Gr(n, k) = St(n, k)/O(k).



4

Nonsmooth Optimization on Riemannian Manifolds

We are looking for numerical algorithms to find

argmin
p∈M

f(p)

where
▶ M is a Riemannian manifold
▶ f :M→ R is a function

f might be nonsmooth and/or nonconvex
M might be high-dimensional



5

A Riemannian Manifold M

A d-dimensional Riemannian manifold can be informally
defined as a set M covered with a “suitable” collection of
charts, that identify subsets of M with open subsets of Rd

and a continuously varying inner product on the tangent
spaces.

[Absil, Mahony, and Sepulchre 2008]



6

A Riemannian Manifold M
Notation.
▶ Logarithmic map logp q = γ̇(0;p,q)
▶ Exponential map expp X = γp,X(1)
▶ Geodesic γ(·;p , q)
▶ Tangent space TpM
▶ inner product (· , ·)p

Numerics.
expp and logp maybe not available
efficiently/ in closed form
⇒ use a retraction and its inverse instead.

γ(·;p , q)p q

expp
logp

X

logp p

TpM

M



7

Manifolds.jl & Manopt.jl – Why Julia?
Goals.
▶ abstract definition of manifolds
⇒ implement abstract solvers on a generic manifold
▶ well-documented and well-tested
▶ fast.
⇒ “Run your favourite solver on your favourite manifold”.

Why Julia? julialang.org
▶ high-level language, properly typed
▶ multiple dispatch (cf. f(x), f(x::Number), f(x::Int))
▶ just-in-time compilation, solves two-language problem
⇒ “nice to write” and as fast as C/C++

▶ I like the community

https://julialang.org


8

ManifoldsBase.jl

[Axen, Baran, RB, and Rzecki 2023]
Goal. Provide an interface to implement and use Riemannian manifolds.

Interface AbstractManifold to model manifolds

Functions like exp(M, p, X), log(M, p, X) or retract(M, p, X, method).

Decorators for implicit or explicit specification of an embedding, a
metric, or a group,

Efficiency by providing in-place variants like exp!(M, q, p, X)



9

Manifolds.jl

[Axen, Baran, RB, and Rzecki 2023]

Goal. Provide a library of Riemannian manifolds,
that is efficiently implemented and well-documented

Meta. generic implementations for Mn×m, M1 ×M2,
vector- and tangent-bundles, esp. TpM, or Lie groups

Library. Implemented functions for
▶ Circle, Sphere, Torus, Hyperbolic, Projective Spaces, Hamiltonian
▶ (generalized, symplectic) Stiefel, Rotations
▶ (generalized, symplectic) Grassmann, fixed rank matrices
▶ Symmetric Positive Definite matrices, with fixed determinant
▶ (several) Multinomial, (skew-)symmetric, and symplectic matrices
▶ Tucker & Oblique manifold, Kendall’s Shape space
▶ probability simplex, orthogonal and unitary matrices, …



10

Concrete Manifold Examples.
Before first run ] add Manifolds to install the package.
Load packages with using Manifolds and
▶ Euclidean space M1 = R^3 and 2-sphere M2 = Sphere(2)
▶ their product manifold M3 = M1 × M2
▶ A signal of rotations M4 = SpecialOrthogonal(3)^10
▶ SPDs M5 = SymmetricPositiveDefinite(3) (affine invariant metric)
▶ a different metric M6 = MetricManifold(M5, LogCholeskyMetric())

Then for any of these
▶ Generate a point p=rand(M) and a vector X = rand(M; vector_at=p)
▶ and for example exp(M, p, X), or in-place exp!(M, q, p, X)



11

Manopt.jl
Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s,
implement initialize_solver!(p, s) and step_solver!(p, s, i)
⇒ an algorithm in the Manopt.jl interface

Highlevel interfaces like gradient_descent(M, f, grad_f)
on any manifold M from Manifolds.jl.
All provide debug output, recording, cache & counting capabilities,
as well as a library of step sizes and stopping criteria.

Manopt family.
manoptjl.org

[RB 2022]
manopt.org

[Boumal, Mishra, Absil, and Sepulchre 2014]
pymanopt.org

[Townsend, Koep, and Weichwald 2016]

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org


12

List of Algorithms in Manopt.jl
Derivatve Free Nelder-Mead, Particle Swarm, CMA-ES
Subgradient-based Subgradient Method, Convex Bundle Method,

Proximal Bundle Method
Gradient-based Gradient Descent, Conjugate Gradient, Stochastic,

Momentum, Nesterov, Averaged, …
Quasi-Newton with (L-)BFGS, DFP, Broyden, SR1,...
Levenberg-Marquard

Hessian-based Trust Regions, Adaptive Regularized Cubics (ARC)
nonsmooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point
constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe
nonconvex Difference of Convex Algorithm, DCPPA

manoptjl.org/stable/solvers/

https://www.manoptjl.org/stable/solvers/


13

Illustrating a few Keyword Arguments
Given cost f(M,p) and gradient grad_f(M,p), a manifold M and a start
point p0.
▶ q = gradient_descent(M, f, grad_f, p0) to perform gradient descent
▶ With Euclidean cost f(E,p) and gradient ∇f(E, p), use for conversion

q = gradient_descent(M, f, ∇f, p0; objective_type=:Euclidean)

▶ print iteration number, cost and change every 10th iterate
q = gradient_descent(M, f, grad_f , p0;

debug=[:Iteration , :Cost, :Change , 10, "\n"]
)

▶ record record=[:Iterate, :Cost, :Change], return_state=true
Access: get_solver_result(q) and get_record(q)

▶ modify stop: stopping_criterion = StopAfterIteration(100)
▶ cache calls cache=(:LRU, [:Cost, :Gradient], 25) (uses LRUCache.jl)
▶ count calls count=[:Cost, :Gradient] (prints with return_state=true)



N
or

ge
s

te
kn

isk
-n

at
ur

vi
te

ns
ka

pe
lig

e
un

iv
er

sit
et

Numerical Examples



14

The Riemannian Convex Bundle Method
[RB, Herzog, and Jasa 2024]

▶ Given f : C → R on a (geodesically) convex set C ⊂M
▶ collect

▶ subgradients Xq(k) ∈ ∂f(q(k))
▶ stabilisation centers p(k) (“best” iterates)

▶ use this information to
▶ determine the next descent direction d(k) ∈ Tp(k)M

by solving a QP in Tp(k)M
▶ where d(k) ∈ ∂c(k)f(p(k))

▶ we stop when both
▶ the approximation ∂c(k)f(p(k)) of ∂f(p(k)) is “good enough”
▶ ∥d(k)∥ is “small enough”



15

The Convex Bundle Method in Manopt.jl
In Manopt.jl a solver call looks like1

p = convex_bundle_method(M, f, ∂f, p0;
diameter = δ, k_max = Ω, m = 10−3, kwargs...

)

where
▶ M is a Riemannian manifold
▶ f is the objective function
▶ ∂f is a subgradient of the objective function
▶ p0 is an initial point on the manifold

The default stopping criterion for the algorithm is set to

−ξ(k) ≤ 10−8.

1full documentation: manoptjl.org/stable/solvers/convex_bundle_method/

https://manoptjl.org/stable/solvers/convex_bundle_method/


16

Denoising a Signal on Hyperbolic Space H2

▶ signal q ∈M, (H2)n, n = 496
▶ noisy signal q̄ ∈M, q̄i = expqi Xi,

σ = 0.1
▶ ROF Model:

argmin
p∈M

1
n
dM(p,q)2

+ α
n−1∑
i=1

dH2(pi,pi+1)

▶ Setting α = 0.05 yields
reconstruction p∗.

▶ in RCBM: set diam(dom f) = b > 0.
(in practice: b =floatmax()≈ 10308)



17

Algorithms for Denoising a Signal

▶ Riemannian Convex Bundle Method (RCBM) [RB, Herzog, and Jasa 2024]

▶ Proximal Bundle Algorithm (PBA) [Hoseini Monjezi, Nobakhtian, and Pouryayevali 2021]

▶ Subgradient Method (SGM) [O. Ferreira and Oliveira 1998]

▶ Cyclic Proximal Point Algorithm (CPPA) [Bačák 2014]

Algorithm Iter. Time (sec.) Objective Error
RCBM 3417 51.393 1.7929× 10−3 3.3194× 10−4

PBA 15000 102.387 1.8153× 10−3 4.3874× 10−4

SGM 15000 99.604 1.7920× 10−3 3.3080× 10−4

CPPA 15000 94.200 1.7928× 10−3 3.3230× 10−4



18

The Riemannian DC Algorithm [RB, O. P. Ferreira, Santos, and Souza 2024]
To solve a Difference of Convex problem

argmin
p∈M

g(p)− h(p).

use

The Riemannian Difference of Convex Algorithm.
Input: An initial point p(0) ∈ dom(g), g and ∂Mh

1: Set k = 0.
2: while not converged do
3: Take X(k) ∈ ∂Mh(p(k))
4: Compute the next iterate p(k+1) as

p(k+1) ∈ argmin
p∈M

g(p)−
(
X(k) , logp(k) p

)
p(k) .

5: Set k← k+ 1
6: end while



19

The Difference of Convex Algorithm in Manopt.jl
The algorithm is implemented and released in Julia using Manopt.jl2.
It can be used with any manifold from Manifolds.jl

A solver call looks like
q = difference_of_convex_algorithm(M, f, g, ∂h, p0)

where one has to implement f(M, p), g(M, p), and ∂h(M, p).

▶ a sub problem is generated if keyword grad_g= is set
▶ an efficient version of its cost and gradient is provided
▶ you can specify the sub-solver using sub_state=

to also set up the specific parameters of your favourite algorithm

2see https://manoptjl.org/stable/solvers/difference_of_convex/

https://manoptjl.org/stable/solvers/difference_of_convex/


20

Rosenbrock and First Order Methods
Problem. We consider the classical Rosenbrock example3

argmin
x∈R2

a
(
x21 − x2

)2
+
(
x1 − b

)2
,

where a,b > 0, usually b = 1 and a≫ b, here: a = 2 · 105.

Known Minimizer x∗ =
(
b
b2
)

with cost f(x∗) = 0.

Goal. Compare first-order methods, e. g. using the (Euclidean) gradient

∇f(x) =
(

4a(x21 − x2)
−2a(x21 − x2)

)
+

(
2(x1 − b)

0

)

3available online in ManoptExamples.jl

https://juliamanifolds.github.io/ManoptExamples.jl/stable/examples/Difference-of-Convex-Rosenbrock/


21

A “Rosenbrock-Metric” on R2

In our Riemannian framework, we can introduce a new metric on R2 as

Gp :=

(
1+ 4p21 −2p1
−2p1 1

)
, with inverse G−1

p =

(
1 2p1
2p1 1+ 4p21

)
.

We obtain (X , Y)p = XTGpY

The exponential and logarithmic map are given as

expp(X) =
(

p1 + X1
p2 + X2 + X21

)
, logp(q) =

(
q1 − p1

q2 − p2 − (q1 − p1)2
)
.

Manifolds.jl:
Implement these functions on MetricManifold(R^2, RosenbrockMetric()).



22

The Riemannian Gradient w.r.t. the new Metric

Let f :M→ R. Given the Euclidean gradient ∇f(p), its Riemannian
gradient grad f :M→ TM is given by

grad f(p) = G−1
p ∇f(p).

While we could implement this denoting ∇f(p) =
(
f ′1(p) f ′2(p)

)T using〈
grad f(q), logq p

〉
q
= (p1 − q1)f

′

1(q) + (p2 − q2 − (p1 − q1)2)f
′

2(q),

but it is automatically done in Manopt.jl.



23

The Experiment Setup
Algorithms. We now compare

1. The Euclidean gradient descent algorithm on R2,
2. The Riemannian gradient descent algorithm on M,
3. The Difference of Convex Algorithm on R2,
4. The Difference of Convex Algorithm on M.

For DCA third we split f into f(x) = g(x)− h(x) with

g(x) = a
(
x21 − x2

)2
+ 2

(
x1 − b

)2 and h(x) =
(
x1 − b

)2
.

Initial point. p0 = 1
10

(
1
2

)
with cost f(p0) ≈ 7220.81.

Stopping Criterion.
dM(p(k),p(k−1)) < 10−16 or ∥grad f(p(k))∥p < 10−16.



24

Results

100 101 102 103 104 105 106 107
10−16

10−10

10−4

102

Iter. k

f(p(k))
Euclidean GD Euclidan DCA

Riemannian GD Riemannian DCA

Algorithm Runtime (sec.) # Iterations
Euclidean GD 305.567 53 073 227
Euclidean DCA 58.268 50 588
Riemannian GD 18.894 2 454 017
Riemannian DCA 7.704 2 459



25

Summary

▶ ManifolddsBase.jl provides an interface to implement a manifold
▶ Manifolds.jl implements a library of manifolds using the interface
▶ Manopt.jl provides optimization algorithms on these manifolds

Outlook.
▶ we coupled Manopt.jl with (Euclidean) AD tools, see ManifoldDiff.jl
▶ the algorithms are also available from witin JuMP.jl
▶ What is (Fenchel) duality on manifolds?



26

Selected References
Axen, S. D., M. Baran, RB, and K. Rzecki (2023). “Manifolds.jl: An Extensible Julia Framework
for Data Analysis on Manifolds”. In: ACM Transactions on Mathematical Software. Accepted for
pulication. doi: 10.1145/3618296. arXiv: 2106.08777.

RB (2022). “Manopt.jl: Optimization on Manifolds in Julia”. In: Journal of Open Source
Software 7.70, p. 3866. doi: 10.21105/joss.03866.

RB, O. P. Ferreira, E. M. Santos, and J. C. d. O. Souza (2024). “The difference of convex
algorithm on Hadamard manifolds”. In: Journal of Optimization Theory and Applications. doi:
10.1007/s10957-024-02392-8. arXiv: 2112.05250.
RB, R. Herzog, and H. Jasa (2024). The Riemannian convex bundle method. arXiv: 2402.13670.

Boumal, N. (2023). An introduction to optimization on smooth manifolds. Cambridge University
Press. url: https://www.nicolasboumal.net/book.

Interested in Numerical Differential Geometry? Join numdiffgeo.zulipchat.com!
ronnybergmann.net/talks/2024-EURO-Manoptjl.pdf

https://doi.org/10.1145/3618296
https://arxiv.org/abs/2106.08777
https://doi.org/10.21105/joss.03866
https://doi.org/10.1007/s10957-024-02392-8
https://arxiv.org/abs/2112.05250
https://arxiv.org/abs/2402.13670
https://www.nicolasboumal.net/book
http://numdiffgeo.zulipchat.com/
http://ronnybergmann.net/talks/2024-EURO-Manoptjl.pdf

	Numerical Examples

