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Difference of Convex

We aim to solve
argmin
p∈M

f(p)

where
▶ M is a Riemannian manifold
▶ f :M→ R is a difference of convex function, i. e. of the form

f(p) = g(p)− h(p)

▶ g,h :M→ R are convex, lower semicontinuous, and proper
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A Riemannian Manifold M

A d-dimensional Riemannian manifold can be informally
defined as a set M covered with a “suitable” collection of
charts, that identify subsets of M with open subsets of Rd

and a continuously varying inner product on the tangent
spaces.

[Absil, Mahony, and Sepulchre 2008]
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A Riemannian Manifold M
Notation.
▶ Logarithmic map logp q = γ̇(0;p,q)
▶ Exponential map expp X = γp,X(1)
▶ Geodesic γ(·;p , q)
▶ Tangent space TpM
▶ inner product (· , ·)p

Numerics.
expp and logp maybe not available
efficiently/ in closed form
⇒ use a retraction and its inverse instead.

γ(·;p , q)p q

expp
logp

X

logp p

TpM

M
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(Geodesic) Convexity

[Sakai 1996; Udrişte 1994]

A set C ⊂M is called (strongly geodesically) convex
if for all p,q ∈ C the geodesic γ(·;p , q) is unique and lies in C.

A function f : C → R is called (geodesically) convex
if for all p,q ∈ C the composition f(γ(t;p , q)), t ∈ [0,1], is convex.
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The Riemannian Subdifferential

Let C be a convex set.
The subdifferential of f at p ∈ C is given by [O. Ferreira and Oliveira 2002; Lee 2003; Udrişte 1994]

∂Mf(p) :=
{
ξ ∈ T ∗

pM
∣∣ f(q) ≥ f(p) + ⟨ξ , logp q⟩p for q ∈ C

}
,

where
▶ T ∗

pM is the dual space of TpM, also called cotangent space
▶ ⟨· , ·⟩p denotes the duality pairing on T ∗

pM×TpM



7

The Fenchel Conjugate
The Fenchel conjugate of a function f : Rn → R is given by

f ∗(ξ) := sup
x∈Rn
⟨ξ, x⟩ − f(x) = sup

x∈Rn

(
ξ
−1

)T (
x

f(x)

)

▶ given ξ ∈ Rn: maximize the distance between ξT· and f
▶ can also be written in the epigraph

The Fenchel biconjugate reads

f ∗ ∗(x) = (f ∗) ∗(x) = sup
ξ∈Rn
⟨ξ , x⟩ − f ∗(ξ).
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Illustration of the Fenchel Conjugate
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The Euclidean DCA
Idea 1. At xk, approximate h(x) by its affine minorization

hk(x) := h(x(k)) + ⟨x− x(k), y(k)⟩ for some y(k) ∈ ∂h(xk)

⇒ iteratively minimize g(x)− hk(x) = g(x)− h(x(k))− ⟨x− x(k), y(k)⟩

Idea 2. Using duality theory finding a new y(k) ∈ ∂h(x(k)) is equivalent to

y(k) ∈ argmin
y∈Rn

{
h∗(y)− g∗(y(k−1))− ⟨y− y(k−1), x(k)⟩

}
Idea 3. Reformulate 2 using a proximal map ⇒ DCPPA

on manifolds this was done in [Almeida, Neto, Oliveira, and Souza 2020; Souza and Oliveira 2015]

In the Euclidean case, all three models are equivalent.
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A Fenchel Duality on a Hadamard Manifold
Let
▶ TM =

⋃̇
p
TpM denote the tangent bundle

▶ analogously T∗M denotes the cotangent bundle
▶ M be a Hadamard manifold (non-positive sectional curvature).

Definition [Silva Louzeiro, RB, and Herzog 2022]

Let f :M→ R.
The Fenchel conjugate of f is the function f ∗ : T ∗M→ R defined by

f ∗(p, ξ) := sup
q∈M

{
⟨ξ, logp q⟩ − f(q)

}
, (p, ξ) ∈ T ∗M.
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The Dual Difference of Convex Problem
Given the Difference of Convex problem

argmin
p∈M

g(p)− h(p)

and the Fenchel duals g∗ and h∗,
we can state the dual difference of convex problem as

[RB, O. P. Ferreira, Santos, and Souza 2024]

argmin
(p,ξ)∈T∗M

h∗(p, ξ)− g∗(p, ξ).

On M = Rn this indeed simplifies to the classical dual problem.

Theorem. [RB, O. P. Ferreira, Santos, and Souza 2024]

inf
(q,X)∈T ∗M

{
h∗(q, X)− g∗(q, X)

}
= inf

p∈M
{g(p)− h(p)} .
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The Dual Difference of Convex Problem

The primal and dual Difference of Convex problem

argmin
p∈M

g(p)− h(p) and argmin
(p,ξ)∈T∗M

h∗(p, ξ)− g∗(p, ξ)

are equivalent in the following sense.

Theorem. [RB, O. P. Ferreira, Santos, and Souza 2024]

If p∗ is a solution of the primal problem, then (p∗, ξ∗) ∈ T∗M is a solution
for the dual problem for all ξ∗ ∈ ∂Mh(p∗) ∩ ∂Mg(p∗).
If (p∗, ξ∗) ∈ T∗M is a solution of the dual problem for some
ξ∗ ∈ ∂Mh(p∗) ∩ ∂Mg(p∗), then p∗ is a solution of the primal problem.
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Derivation of the Riemannian DCA
We consider the first order Taylor approximation of h at some point p(k):
With ξ ∈ ∂h(p(k)) we set

hk(p) := h(p(k)) + ⟨ξ , logp(k) p⟩p(k)

Using musical isomorphisms we identify X = ξ♯ ∈ TpM,
where we call X a subgradient. Locally hk minorizes h, i. e.

hk(q) ≤ h(q) locally around p(k)

⇒ Use −hk(p) as upper bound for −h(p) in f = g− h.

Note. On Rn the function hk is linear.
On a manifold hk is nonlinear and not even necessarily convex, even on a
Hadamard manifold.
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The Riemannian DC Algorithm
[RB, O. P. Ferreira, Santos, and Souza 2024]

Input: An initial point p(0) ∈ dom(g), g and ∂Mh
1: Set k = 0.
2: while not converged do
3: Take X(k) ∈ ∂Mh(p(k))
4: Compute the next iterate p(k+1) as

p(k+1) ∈ argmin
p∈M

g(p)−
(
X(k) , logp(k) p

)
p(k) . (∗)

5: Set k← k+ 1
6: end while

Note. In general the subproblem (∗) can not be solved in closed form.
But an approximate solution yields a good candidate.
For example: Given g, p(k), and X(k) and grad g ⇒ Gradient descent.
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Convergence of the Riemannian DCA
Let {p(k)}k∈N and {X(k)}k∈N be the iterates and subgradients of the RDCA.
Theorem. [RB, O. P. Ferreira, Santos, and Souza 2024]

If p̄ is a cluster point of {p(k)}k∈N, then p̄ ∈ dom(g) and there exists a
cluster point X̄ of {X(k)}k∈N s. t. X̄ ∈ ∂g(p̄) ∩ ∂h(p̄).
⇒ Every cluster point of {p(k)}k∈N, if any, is a critical point of f.

Proposition. [RB, O. P. Ferreira, Santos, and Souza 2024]

Let g be σ-strongly (geodesically) convex. Then

f(p(k+1)) ≤ f(p(k))− σ

2
d2(p(k),p(k+1))

and
∞∑
k=0

d2(p(k),p(k+1)) <∞, so in particular lim
k→∞

d(p(k),p(k+1)) = 0.
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Software
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Manifolds.jl & Manopt.jl – Why Julia?
Goals.
▶ abstract definition of manifolds
⇒ implement abstract solvers on a generic manifold
▶ well-documented and well-tested
▶ fast.
⇒ “Run your favourite solver on your favourite manifold”.

Why Julia? julialang.org
▶ high-level language, properly typed
▶ multiple dispatch (cf. f(x), f(x::Number), f(x::Int))
▶ just-in-time compilation, solves two-language problem
⇒ “nice to write” and as fast as C/C++

▶ I like the community

https://julialang.org
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ManifoldsBase.jl

[Axen, Baran, RB, and Rzecki 2023]
Goal. Provide an interface to implement and use Riemannian manifolds.

Interface AbstractManifold to model manifolds

Functions like exp(M, p, X), log(M, p, X) or retract(M, p, X, method).

Decorators for implicit or explicit specification of an embedding, a
metric, or a group,

Efficiency by providing in-place variants like exp!(M, q, p, X)
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Manifolds.jl

[Axen, Baran, RB, and Rzecki 2023]

Goal. Provide a library of Riemannian manifolds,
that is efficiently implemented and well-documented

Meta. generic implementations for Mn×m, M1 ×M2,
vector- and tangent-bundles, esp. TpM, or Lie groups

Library. Implemented functions for
▶ Circle, Sphere, Torus, Hyperbolic, Projective Spaces, Hamiltonian
▶ (generalized, symplectic) Stiefel, Rotations
▶ (generalized, symplectic) Grassmann, fixed rank matrices
▶ Symmetric Positive Definite matrices, with fixed determinant
▶ (several) Multinomial, (skew-)symmetric, and symplectic matrices
▶ Tucker & Oblique manifold, Kendall’s Shape space
▶ probability simplex, orthogonal and unitary matrices, Rotations, …
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Concrete Manifold Examples.
Before first run ] add Manifolds to install the package.
Load packages with using Manifolds and
▶ Euclidean space M1 = R^3 and 2-sphere M2 = Sphere(2)
▶ their product manifold M3 = M1 × M2
▶ A signal of rotations M4 = SpecialOrthogonal(3)^10
▶ SPDs M5 = SymmetricPositiveDefinite(3) (affine invariant metric)
▶ a different metric M6 = MetricManifold(M5, LogCholeskyMetric())

Then for any of these
▶ Generate a point p=rand(M) and a vector X = rand(M; vector_at=p)
▶ and for example exp(M, p, X), or in-place exp!(M, q, p, X)
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Manopt.jl
Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s,
implement initialize_solver!(p, s) and step_solver!(p, s, i)
⇒ an algorithm in the Manopt.jl interface

Highlevel interfaces like gradient_descent(M, f, grad_f)
on any manifold M from Manifolds.jl.
All provide debug output, recording, cache & counting capabilities,
as well as a library of step sizes and stopping criteria.

Manopt family.
manoptjl.org

[RB 2022]
manopt.org

[Boumal, Mishra, Absil, and Sepulchre 2014]
pymanopt.org

[Townsend, Koep, and Weichwald 2016]

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org
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List of Algorithms in Manopt.jl
Derivatve Free Nelder-Mead, Particle Swarm, CMA-ES
Subgradient-based Subgradient Method, Convex Bundle Method,

Proximal Bundle Method
Gradient-based Gradient Descent, Conjugate Gradient, Stochastic,

Momentum, Nesterov, Averaged, …
Quasi-Newton with (L-)BFGS, DFP, Broyden, SR1,...
Levenberg-Marquard

Hessian-based Trust Regions, Adaptive Regularized Cubics (ARC)
nonsmooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point
constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe
nonconvex Difference of Convex Algorithm, DCPPA

manoptjl.org/stable/solvers/

https://www.manoptjl.org/stable/solvers/
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Illustrating a few Keyword Arguments
Given cost f(M,p) and gradient grad_f(M,p), a manifold M and a start
point p0.
▶ q = gradient_descent(M, f, grad_f, p0) to perform gradient descent
▶ With Euclidean cost f(E,p) and gradient ∇f(E, p), use for conversion

q = gradient_descent(M, f, ∇f, p0; objective_type=:Euclidean)

▶ print iteration number, cost and change every 10th iterate
q = gradient_descent(M, f, grad_f , p0;

debug=[:Iteration , :Cost, :Change , 10, "\n"]
)

▶ record reocord=[:Iterate, :Cost, :Change], return_state=true
Access: get_solver_result(q) and get_record(q)

▶ modify stop: stopping_criterion = StopAfterIteration(100)
▶ cache calls cache=(:LRU, [:Cost, :Gradient], 25) (uses LRUCache.jl)
▶ count calls count=[:Cost, :Gradient] (prints with return_state=true)
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The Difference of Convex Algorithm in Manopt.jl
The algorithm is implemented and released in Julia using Manopt.jl1.
It can be used with any manifold from Manifolds.jl

A solver call looks like
q = difference_of_convex_algorithm(M, f, g, ∂h, p0)

where one has to implement f(M, p), g(M, p), and ∂h(M, p).

▶ a sub problem is generated if keyword grad_g= is set
▶ an efficient version of its cost and gradient is provided
▶ you can specify the sub-solver using sub_state=

to also set up the specific parameters of your favourite algorithm

1see https://manoptjl.org/stable/solvers/difference_of_convex/

https://manoptjl.org/stable/solvers/difference_of_convex/
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A Numerical Example
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Rosenbrock and First Order Methods
Problem. We consider the classical Rosenbrock example2

argmin
x∈R2

a
(
x21 − x2

)2
+
(
x1 − b

)2
,

where a,b > 0, usually b = 1 and a≫ b, here: a = 2 · 105.

Known Minimizer x∗ =
(
b
b2
)

with cost f(x∗) = 0.

Goal. Compare first-order methods, e. g. using the (Euclidean) gradient

∇f(x) =
(

4a(x21 − x2)
−2a(x21 − x2)

)
+

(
2(x1 − b)

0

)

2available online in ManoptExamples.jl

https://juliamanifolds.github.io/ManoptExamples.jl/stable/examples/Difference-of-Convex-Rosenbrock/
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A “Rosenbrock-Metric” on R2

In our Riemannian framework, we can introduce a new metric on R2 as

Gp :=

(
1+ 4p21 −2p1
−2p1 1

)
, with inverse G−1

p =

(
1 2p1
2p1 1+ 4p21

)
.

We obtain (X , Y)p = XTGpY

The exponential and logarithmic map are given as

expp(X) =
(

p1 + X1
p2 + X2 + X21

)
, logp(q) =

(
q1 − p1

q2 − p2 − (q1 − p1)2
)
.

Manifolds.jl:
Implement these functions on MetricManifold(R^2, RosenbrockMetric()).
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The Riemannian Gradient w.r.t. the new Metric

Let f :M→ R. Given the Euclidean gradient ∇f(p), its Riemannian
gradient grad f :M→ TM is given by

grad f(p) = G−1
p ∇f(p).

While we could implement this denoting ∇f(p) =
(
f ′1(p) f ′2(p)

)T using〈
grad f(q), logq p

〉
q
= (p1 − q1)f

′

1(q) + (p2 − q2 − (p1 − q1)2)f
′

2(q),

but it is automatically done in Manopt.jl.
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The Experiment Setup
Algorithms. We now compare

1. The Euclidean gradient descent algorithm on R2,
2. The Riemannian gradient descent algorithm on M,
3. The Difference of Convex Algorithm on R2,
4. The Difference of Convex Algorithm on M.

For DCA third we split f into f(x) = g(x)− h(x) with

g(x) = a
(
x21 − x2

)2
+ 2

(
x1 − b

)2 and h(x) =
(
x1 − b

)2
.

Initial point. p0 = 1
10

(
1
2

)
with cost f(p0) ≈ 7220.81.

Stopping Criterion.
dM(p(k),p(k−1)) < 10−16 or ∥grad f(p(k))∥p < 10−16.
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Results

100 101 102 103 104 105 106 107
10−16

10−10

10−4

102

Iter. k

f(p(k))
Euclidean GD Euclidan DCA

Riemannian GD Riemannian DCA

Algorithm Runtime (sec.) # Iterations
Euclidean GD 305.567 53 073 227
Euclidean DCA 58.268 50 588
Riemannian GD 18.894 2 454 017
Riemannian DCA 7.704 2 459
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Summary
▶ Nonsmooth, nonconvex problems on manifold: difference of convex

argmin
p∈M

g(p)− h(p)

▶ The Difference of Convex Algorithm
Relation to Fenchel Duality on Hadamard manifolds
Convergence on Hadamard manifolds

▶ Manifolds.jl and Manopt.jl

Numerically solve optimization problems on Riemannian manifolds

Outlook.
▶ couple Manopt.jl with (Euclidean) AD tools using ManifoldDiff.jl
▶ What is (Fenchel) duality on manifolds?
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