

Nonsmooth, nonconvex Optimization on Riemannian Manifolds

Ronny Bergmann

Optimization in Oslo Seminar, Simula Research Laboratory

Oslo, October 18, 2023

Motivation

The Rayleigh Quotient

When minimizing the Rayleigh quotient for a symmetric $A \in \mathbb{R}^{n \times n}$

$$\underset{x \in \mathbb{R}^n \setminus \{0\}}{\arg\min} \, \frac{x^T A x}{\|x\|^2}$$

- \bigwedge Any eigenvector x^* to the smallest EV λ is a minimizer
- no isolated minima and Newton's method diverges
- Constrain the problem to unit vectors ||x|| = 1!

classic constrained optimization (ALM, EPM,...)

Today Utilize the geometry of the sphere

unconstrained optimization $\operatorname{arg\,min} p^{\mathsf{T}} A p$

$$\underset{p \in \mathbb{S}^{n-1}}{\operatorname{arg min}} \, p^{\mathsf{T}} A p$$

adapt unconstrained optimization to Riemannian manifolds.

The Generalized Rayleigh Quotient

More general. Find a basis for the space of eigenvectors to $\lambda_1 < \lambda_2 < \cdots < \lambda_{\nu}$

$$\underset{X \in \text{St}(n,k)}{\text{arg min tr}} (X^{\mathsf{T}}AX), \qquad \text{St}(n,k) \coloneqq \big\{ X \in \mathbb{R}^{n \times k} \, \big| \, X^{\mathsf{T}}X = I \big\},$$

 \triangle a problem on the Stiefel manifold St(n, k)

- \triangle Invariant under rotations within a k-dim subspace.
- Tind the best subspace!

$$\underset{\mathsf{span}(X) \in \mathsf{Gr}(n,k)}{\mathsf{arg}\,\mathsf{min}}\,\mathsf{tr}(X^\mathsf{T}AX), \qquad \mathsf{Gr}(n,k) \coloneqq \big\{\mathsf{span}(X)\,\big|\,X \in \mathsf{St}(n,k)\big\},$$

 \triangle a problem on the Grassmann manifold Gr(n, k) = St(n, k)/O(k).

Optimization on Riemannian Manifolds

We are looking for numerical algorithms to find

$$\arg\min_{p\in\mathcal{M}}f(p)$$

where

- $\triangleright \mathcal{M}$ is a Riemannian manifold
- $ightharpoonup f: \mathcal{M}
 ightarrow \overline{\mathbb{R}}$ is a function
- Λ f might be nonsmooth and/or nonconvex
- $riangle \mathcal{M}$ might be high-dimensional

A Riemannian Manifold ${\mathcal M}$

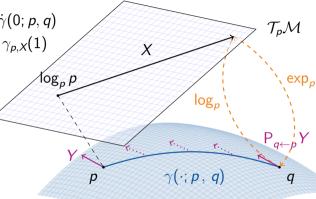
A d-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a "suitable" collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^d and a continuously varying inner product on the tangent spaces.

[Absil, Mahony, and Sepulchre 2008]

A Riemannian Manifold \mathcal{M}

Notation.

- ► Logarithmic map $\log_p q = \dot{\gamma}(0; p, q)$
- ightharpoonup Exponential map $\exp_p X = \gamma_{p,X}(1)$
- Geodesic $\gamma(\cdot; p, q)$
- ▶ Tangent space $\mathcal{T}_p\mathcal{M}$
- ▶ inner product $(\cdot, \cdot)_p$
- ightharpoonup parallel transport $\mathcal{P}_{q \leftarrow p} X$



(Geodesic) Convexity

[Sakai 1996; Udriște 1994]

A set $\mathcal{C} \subset \mathcal{M}$ is called (strongly geodesically) convex if for all $p, q \in \mathcal{C}$ the geodesic $\gamma(\cdot; p, q)$ is unique and lies in \mathcal{C} .

A function $f: \mathcal{C} \to \overline{\mathbb{R}}$ is called (geodesically) convex if for all $p, q \in \mathcal{C}$ the composition $f(\gamma(t; p, q)), t \in [0, 1]$, is convex.

The Riemannian Subdifferential

The subdifferential of f at $p \in C$ is given by

[Lee 2003; Udriște 1994]

$$\partial_{\mathcal{M}} \mathit{f}(p) \coloneqq \left\{ \xi \in \mathcal{T}_p^* \mathcal{M} \,\middle|\, \mathit{f}(q) \geq \mathit{f}(p) + \langle \xi \,, \log_p q \rangle_p \;\; \text{for} \; q \in \mathcal{C} \right\},$$

where

- $ightharpoonup \mathcal{T}_p^*\mathcal{M}$ is the dual space of $\mathcal{T}_p\mathcal{M}$,
- $ightharpoonup \langle \cdot \, , \cdot \rangle_p$ denotes the duality pairing on $\mathcal{T}_p^*\mathcal{M} \times \mathcal{T}_p\mathcal{M}$

Musical Isomorphisms

Using the tangent space $\mathcal{T}_p\mathcal{M}$ and its dual $\mathcal{T}_p^*\mathcal{M}$, the inner product $(\cdot\,,\,\cdot)_p$ and the duality pairing $\langle\cdot\,,\,\cdot\rangle$,

the musical isomorphisms are

[Lee 2003]

$$b : \mathcal{T}_p \mathcal{M} \to \mathcal{T}_p^* \mathcal{M} \quad \text{ and } \quad \sharp : \mathcal{T}_p^* \mathcal{M} \to \mathcal{T}_p \mathcal{M}$$

such that for any $X, Y \in \mathcal{T}_p \mathcal{M}$ and $\xi \in \mathcal{T}_p^* \mathcal{M}$ we have

$$\langle X^{\flat}\,,\,Y
angle = (X,\,\,Y)_{p} \quad \text{ and } \quad (\xi^{\sharp}\,,\,\,Y)_{p} = \langle \xi\,,\,Y
angle$$

The Proximal Map

For a function $f:\mathcal{M}\to\mathbb{R}$ and a $\lambda>0$ we define the proximal map as [Moreau 1965; Rockafellar 1970; O. Ferreira and Oliveira 2002]

$$\operatorname{prox}_{\lambda f}(p) \coloneqq \operatorname*{arg\;min}_{q \in \mathcal{M}} d_{\mathcal{M}}(q,p)^2 + \lambda f(q).$$

Properties.

- Minimizer p^* of $f \Leftrightarrow$ fix point of the prox $\operatorname{prox}_{\lambda f}(p^*) = p^*$
- ▶ If *f* is proper, convex, lsc.: arg min unique.
- **Proximal point algorithm (PPA)**: $p^{(k+1)} = \text{prox}_{\lambda f}(p^{(k)})$ converges to p^*

Nonsmooth splittings

Splitting Methods & Algorithms

For $\underset{p \in \mathcal{M}}{\text{arg min }} f(p) + g(p)$ we can use

- Cyclic Proximal Point Algorithm (CPPA)
- ▶ (parallel) Douglas—Rachford Algorithm (PDRA) [RB, Persch, and Steidl 2016]

which are for $\mathcal{M}=\mathbb{R}^n$ also equivalend to

[Setzer 2011; O'Connor and Vandenberghe 2018]

[Bačák 2014]

- Primal-Dual Hybrid Gradient Algorithm (PDHGA) [Esser, Zhang, and Chan 2010]
- Chambolle-Pock Algorithm (CPA)

[Chambolle and Pock 2011; Pock, Cremers, Bischof, and Chambolle 2009]

Challenge.

These rely on the dual space of \mathbb{R}^n , which \mathcal{M} does not have. More precisely. They employ the Fenchel conjugate.

The Fenchel Conjugate

The Fenchel conjugate of a function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is given by

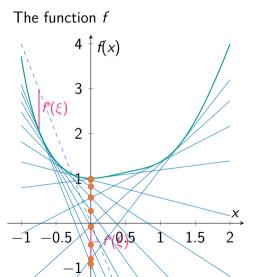
$$f^*(\xi) \coloneqq \sup_{x \in \mathbb{R}^n} \langle \xi, x \rangle - f(x) = \sup_{x \in \mathbb{R}^n} \begin{pmatrix} \xi \\ -1 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} x \\ f(x) \end{pmatrix}$$

- ▶ given $\xi \in \mathbb{R}^n$: maximize the distance between ξ^T and f
- can also be written in the epigraph

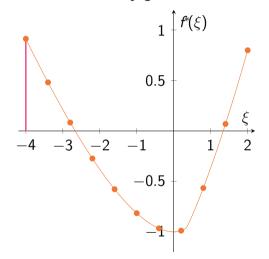
The Fenchel biconjugate reads

$$f^{**}(x) = (f^*)^*(x) = \sup_{\xi \in \mathbb{R}^n} \langle \xi, x \rangle - f^*(\xi).$$

Illustration of the Fenchel Conjugate



The Fenchel conjugate f^*



Properties of the Fenchel Conjugate

- ightharpoonup The Fenchel conjugate f^* is convex (even if f is not)
- $ightharpoonup f^{**}$ is the largest convex, lsc function with $f^{**} < f$
- ▶ If f(x) < g(x) for all $x \in \mathbb{R}^n \Rightarrow f^*(\xi) > g^*(\xi)$ for all $\xi \in \mathbb{R}^n$
- ▶ Fenchel–Moreau Theorem. f convex, proper, $lsc \Rightarrow f^{**} = f$.
- ► Fenchel—Young inequality.

$$f(x) + f^*(\xi) \ge \xi^{\mathsf{T}} x$$
 for all $x, \xi \in \mathbb{R}^n$

For a proper, convex function f

$$\xi \in \partial f(x) \Leftrightarrow f(x) + f^*(\xi) = \xi^{\mathsf{T}} x$$

For a proper, convex, lsc function f, then

$$\xi \in \partial f(x) \Leftrightarrow x \in \partial f^*(\xi)$$

The (Riemannian) *m*-Fenchel Conjugate

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

Idea. Localize to $C \subset M$ around a point m which "acts as" 0.

The *m*-Fenchel conjugate of a function $f \colon \mathcal{C} \to \overline{\mathbb{R}}$ is given by

$$f_m^*(\xi_m) := \sup_{X \in \mathcal{L}_{\mathcal{C},m}} \{ \langle \xi_m, X \rangle - f(\exp_m X) \},$$

where $\mathcal{L}_{\mathcal{C},m} \coloneqq \{X \in \mathcal{T}_m \mathcal{M} \mid q = \exp_m X \in \mathcal{C} \text{ and } \|X\|_p = d(q,p)\}.$

Let $m' \in \mathcal{C}$. The mm'-Fenchel-biconjugate $F^{**}_{mm'} : \mathcal{C} \to \overline{\mathbb{R}}$ is given by

$$F_{mm'}^{**}(p) = \sup_{\xi_{m'} \in \mathcal{T}_{m'}^{*} \mathcal{M}} \left\{ \langle \xi_{m'} , \log_{m'} p \rangle - F_{m}^{*} (\mathsf{P}_{m \leftarrow m'} \xi_{m'}) \right\},$$

where usually we only use the case m = m'.

Properties of the *m***-Fenchel Conjugate**

- $ightharpoonup f_m^*$ is convex on $\mathcal{T}_m^*\mathcal{M}$
- ▶ If $f(p) \le g(p)$ for all $p \in \mathcal{C} \Rightarrow f_m^*(\xi_m) \ge g_m^*(\xi_m)$ for all $\xi_m \in \mathcal{T}_m^*\mathcal{M}$
- ► Fenchel–Moreau Theorem $f \circ \exp_m \text{ convex (on } \mathcal{T}_m \mathcal{M})$, proper, lsc, $\Rightarrow f_{mm}^{**} = f \text{ on } \mathcal{C}$.
- ▶ Fenchel-Young inequality: For a proper, convex function $f \circ \exp_m$

$$\xi_p \in \partial_{\mathcal{M}} f(p) \Leftrightarrow f(p) + f_m^*(\mathsf{P}_{m \leftarrow p} \xi_p) = \langle \mathsf{P}_{m \leftarrow p} \xi_p, \mathsf{log}_m p \rangle.$$

► For a proper, convex, lsc function $f \circ \exp_m$

$$\xi_p \in \partial_{\mathcal{M}} f(p) \Leftrightarrow \log_m p \in \partial f_m^*(\mathsf{P}_{m \leftarrow p} \xi_p).$$

The Chambolle-Pock Algorithm

From the pair of primal-dual problems

[Chambolle and Pock 2011]

$$\min_{x \in \mathbb{R}^n} f(x) + g(Kx), \quad K \text{ linear,}$$
 $\max_{\xi \in \mathbb{R}^m} - f^*(-K^*\xi) - g^*(\xi)$

we obtain for f,g proper convex, lsc the optimality conditions of a solution $(\hat{x},\hat{\xi})$ as

$$-K^*\hat{\xi} \in \partial f(\hat{x})$$
$$K\hat{x} \in \partial g^*(\hat{\xi})$$

The Chambolle-Pock Algorithm

From the pair of primal-dual problems

[Chambolle and Pock 2011]

$$\min_{x \in \mathbb{R}^n} f(x) + g(Kx), \quad K \text{ linear,}$$
 $\max_{\xi \in \mathbb{R}^m} - f^*(-K^*\xi) - g^*(\xi)$

we obtain for f, g proper convex, lsc the

Chambolle–Pock Algorithm. with $\sigma > 0$, $\tau > 0$, $\theta \in \mathbb{R}$ reads

$$\begin{aligned} \mathbf{x}^{(k+1)} &= \mathsf{prox}_{\sigma f} \big(\mathbf{x}^{(k)} - \sigma K^* \bar{\xi}^{(k)} \big) \\ \xi^{(k+1)} &= \mathsf{prox}_{\tau g^{,*}} \big(\xi^{(k)} + \tau K \mathbf{x}^{(k+1)} \big) \\ \bar{\xi}^{(k+1)} &= \xi^{(k+1)} + \theta \big(\xi^{(k+1)} - \xi^{(k)} \big) \end{aligned}$$

Saddle Point Formulation on Manifolds

On manifolds, we consider for

$$\min_{p\in\mathcal{M}} f(p) + g(\Lambda p), \qquad \Lambda \colon \mathcal{M} \to \mathcal{N},$$

where f is geodesically convex, and $g \circ \exp_n$ is convex for some $n \in \mathcal{N}$.

Saddle point formulation. Using the *n*-Fenchel conjugate g_n^* of g:

$$\min_{p \in \mathcal{C}} \max_{\xi_n \in \mathcal{T}_n^* \mathcal{N}} \langle \xi_n, \log_n \Lambda(p) \rangle + f(p) - g_n^*(\xi_n).$$

But. Λ is inherently nonlinear and inside a logarithmic map \Rightarrow no adjoint.

Approach. Linearization: Choose
$$m$$
 such that $n = \Lambda(m)$ and $\Lambda(p) \approx \exp_{\Lambda(m)} D\Lambda(m) [\log_m p].$

The exact Riemannian Chambolle—Pock Algorithm

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021; Chambolle and Pock 2011]

```
Input: m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n = \Lambda(m), \xi_n^{(0)} \in \mathcal{T}_n^* \mathcal{N}, \text{ and } \sigma, \tau, \theta > 0
  1. k \leftarrow 0
  2: \bar{p}^{(0)} \leftarrow p^{(0)}
  3: while not converged do
  4: \xi_n^{(k+1)} \leftarrow \operatorname{prox}_{\tau g_n^*} \left( \xi_n^{(k)} + \tau \left( \log_n \Lambda(\bar{p}^{(k)}) \right)^{\flat} \right)
  5: p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma f} \left( \exp_{p^{(k)}} \left( \mathsf{P}_{p^{(k)} \leftarrow m} (-\sigma D \Lambda(m)^* [\xi_n^{(k+1)}])^{\sharp} \right) \right)
  6: \bar{p}^{(k+1)} \leftarrow \exp_{p^{(k+1)}} \left( -\theta \log_{p^{(k+1)}} p^{(k)} \right)
                k \leftarrow k + 1
   8: end while
Output: p^{(k)}
```


Difference of Convex

Difference of Convex

We aim to solve

$$\operatorname*{arg\;min}_{p\in\mathcal{M}}\mathit{f}(p)$$

where

- ► M is a Riemannian manifold
- $ightharpoonup f: \mathcal{M} \to \mathbb{R}$ is a difference of convex function, i. e. of the form

$$f(p) = g(p) - h(p)$$

 $lackbox{} g,h\colon \mathcal{M} o \overline{\mathbb{R}}$ are convex, lower semicontinuous, and proper

The Euclidean DCA

Idea 1. At x_k , approximate h(x) by its affine minorization $h_k(x) := h(x^{(k)}) + \langle x - x^{(k)}, y^{(k)} \rangle$ for some $y^{(k)} \in \partial h(x^k)$.

$$\Rightarrow$$
 minimize $g(x) - h_k(x) = g(x) + h(x^{(k)}) - \langle x - x^{(k)}, y^{(k)} \rangle$ instead.

Idea 2. Using duality theory finding a new $y^{(k)} \in \partial h(x^{(k)})$ is equivalent to

$$y^{(k)} \in \operatorname*{arg\,min}_{y \in \mathbb{R}^n} \Bigl\{ h^*(y) - g^*(y^{(k-1)}) - \langle y - y^{(k-1)}, x^{(k)}
angle \Bigr\}$$

Idea 3. Reformulate 2 using a proximal map \Rightarrow DCPPA

On manifolds:

[Almeida, Neto, Oliveira, and Souza 2020; Souza and Oliveira 2015]

In the Euclidean case, all three models are equivalent.

A Fenchel Duality on a Hadamard Manifold

[Silva Louzeiro, RB, and Herzog 2022]

Definition

Let $f: \mathcal{M} \to \overline{\mathbb{R}}$. The Fenchel conjugate of f is the function $f^*: \mathcal{T}^*\mathcal{M} \to \overline{\mathbb{R}}$ defined by

$$f^*(p,\xi) \coloneqq \sup_{q \in \mathcal{M}} \Big\{ \langle \xi, \log_p q
angle - \mathit{f}(q) \Big\}, \qquad (p,\xi) \in \mathcal{T}^* \mathcal{M}.$$

The Dual Difference of Convex Problem

Given the Difference of Convex problem

$$\operatorname{arg\ min}_{p\in\mathcal{M}}g(p)-h(p)$$

and the Fenchel duals g^* and h^* we can state the dual difference of convex problem as [RB, O. P. Ferreira, Santos, and Souza 2023]

$$\underset{(p,\xi)\in T^*\mathcal{M}}{\operatorname{arg\,min}}\ h^*(p,\xi)-g^*(p,\xi).$$

On $\mathcal{M} = \mathbb{R}^n$ this indeed simplifies to the classical dual problem.

[RB, O. P. Ferreira, Santos, and Souza 2023]

Theorem.

$$\inf_{(q,X)\in\mathcal{T}^*\mathcal{M}}\left\{h^*(q,X)-g^*(q,X)\right\}=\inf_{p\in\mathcal{M}}\left\{g(p)-h(p)\right\}.$$

The Dual Difference of Convex Problem

The primal and dual Difference of Convex problem

$$\underset{p \in \mathcal{M}}{\operatorname{arg \, min}} \, g(p) - h(p)$$
 and $\underset{(p,\xi) \in T^*\mathcal{M}}{\operatorname{arg \, min}} \, h^*(p,\xi) - g^*(p,\xi)$

are equivalent in the following sense.

Theorem.

[RB, O. P. Ferreira, Santos, and Souza 2023]

If p^* is a solution of the primal problem, then $(p^*, \xi^*) \in T^*\mathcal{M}$ is a solution for the dual problem for all $\xi^* \in \partial_{\mathcal{M}} h(p^*) \cap \partial_{\mathcal{M}} g(p^*)$.

If $(p^*, \xi^*) \in T^*\mathcal{M}$ is a solution of the dual problem for some $\xi^* \in \partial_{\mathcal{M}} h(p^*) \cap \partial_{\mathcal{M}} g(p^*)$, then p^* is a solution of the primal problem.

Derivation of the Riemannian DCA

We consider the linearization of h at some point $p^{(k)}$: With $\xi \in \partial h(p^{(k)})$ we get

$$h_k(p) = h(p^{(k)}) + \langle \xi, \log_{p^{(k)}} p \rangle_{p^{(k)}}$$

Using musical isomorphisms we identify $X = \xi^{\sharp} \in T_p \mathcal{M}$, where we call X a subgradient. Locally h_k minorizes h, i. e.

$$h_k(q) \leq h(q)$$
 locally around $p^{(k)}$

 \Rightarrow Use $-h_k(p)$ as upper bound for -h(p) in f.

Note. On \mathbb{R}^n the function h_k is linear.

On a manifold h_k is not necessarily convex, even on a Hadamard manifold.

The Riemannian DC Algorithm

[RB, O. P. Ferreira, Santos, and Souza 2023]

Input: An initial point $p^0 \in \text{dom}(g)$, g and $\partial_{\mathcal{M}} h$

- 1: Set k = 0.
- 2: while not converged do
- 3: Take $X^{(k)} \in \partial_{\mathcal{M}} h(p^{(k)})$
- 4: Compute the next iterate p^{k+1} as

$$p^{(k+1)} \in \operatorname*{arg\,min}_{p \in \mathcal{M}} g(p) - \left(X_k \,,\, \log_{p^{(k)}} p \right)_{p^{(k)}}. \tag{*}$$

- 5: Set $k \leftarrow k + 1$
- 6: end while

Note. In general the subproblem (*) can not be solved in closed form. But an approximate solution yields a good candidate.

Convergence of the Riemannian DCA

[RB, O. P. Ferreira, Santos, and Souza 2023]

Let $\{p^{(k)}\}_{k\in\mathbb{N}}$ and $\{X^{(k)}\}_{k\in\mathbb{N}}$ be the iterates and subgradients of the RDCA.

Theorem.

If \bar{p} is a cluster point of $\{p^{(k)}\}_{k\in\mathbb{N}}$, then $\bar{p}\in \text{dom}(g)$ and there exists a cluster point \bar{X} of $\{X^{(k)}\}_{k\in\mathbb{N}}$ s. t. $\bar{X}\in\partial g(\bar{p})\cap\partial h(\bar{p})$.

 \Rightarrow Every cluster point of $\{p^{(k)}\}_{k\in\mathbb{N}}$, if any, is a critical point of f.

Proposition. Let g be σ -strongly (geodesically) convex. Then

$$f(p_{k+1}) \leq f(p^{(k)}) - \frac{\sigma}{2} d^2(p^{(k)}, p_{k+1}).$$

and
$$\sum_{k \to \infty} d^2(p^{(k)},p^{(k+1)}) < \infty$$
, so in particular $\lim_{k \to \infty} d(p^{(k)},p^{(k+1)}) = 0$.

Software

ManifoldsBase.jl

[Axen, Baran, RB, and Rzecki 2023]

Goal. Provide an interface to implement and use Riemannian manifolds.

Interface AbstractManifold to model manifolds

Functions like exp(M, p, X), log(M, p, X) or retract(M, p, X, method).

Decorators for implicit or explicit specification of an embedding, a metric, or a group,

Efficiency by providing in-place variants like exp! (M, q, p, X)

Manifolds.il

Meta. generic implementations for $\mathcal{M}^{n\times m}$. $\mathcal{M}_1 \times \mathcal{M}_2$. vector- and tangent-bundles, esp. $T_p\mathcal{M}$, or Lie groups

Library. Implemented functions for

- Circle, Sphere, Torus, Hyperbolic, Projective Spaces
- (generalized, symplectic) Stiefel, (generalized) Grassmann, Rotations
- Symmetric Positive Definite matrices
- Multinomial, Symmetric, Symplectic matrices
- ► Tucker & Oblique manifold. Kendall's Shape space

Manopt.jl

Goal. Provide optimization algorithms on Riemannian manifolds.


```
Features. Given a Problem p and a SolverState s, implement initialize_solver!(p, s) and step_solver!(p, s, i) ⇒ an algorithm in the Manopt.jl interface
```

Highlevel interface like gradient_descent(M, f, grad_f) on any manifold M from Manifolds.jl.

Provide debug output, recording, cache & counting capabilities, as well as a library of step sizes and stopping criteria.

Manopt family.

Manopt.jl

Algorithms.

Cost-based Nelder-Mead, Particle Swarm

Subgradient-based Subgradient Method

Gradient-based Gradient Descent, Conjugate Gradient, Stochastic,

Momentum, Nesterov, Averaged, ...

Quasi-Newton: (L-)BFGS, DFP, Broyden, SR1,...

Hessian-based Trust Regions, Adaptive Regularized Cubics (ARC) nonsmooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe nonconvex Difference of Convex Algorithm, DCPPA

Implementation of the DCA

The algorithm is implemented and released in Julia using Manopt.jl¹. It can be used with any manifold from Manifolds.jl

A solver call looks like

```
q = difference_of_convex_algorithm(M, f, g, \partial h, p0) where one has to implement f(M, p), g(M, p), and \partial h(M, p).
```

- ▶ a sub problem is automatically generated
- ▶ an efficient version of its cost and gradient is provided
- you can specify the sub-solver to using sub_state= to also set up the specific parameters of your favourite algorithm

¹see https://manoptjl.org/stable/solvers/difference of convex/

Numerical Examples

The ℓ^2 -TV Model

[Rudin, Osher, and Fatemi 1992; Lellmann, Strekalovskiy, Koetter, and Cremers 2013; Weinmann, Demaret, and Storath 2014] For a manifold-valued image $q\in\mathcal{M}$, $\mathcal{M}=\mathcal{N}^{d_1,d_2}$, we compute

$$rg \min_{oldsymbol{p} \in \mathcal{M}} rac{1}{2lpha} d_{\mathcal{M}}^{oldsymbol{p}}(oldsymbol{p},oldsymbol{q}) + \|oldsymbol{\Lambda}(oldsymbol{p})\|_{oldsymbol{g},oldsymbol{s},oldsymbol{1}}$$

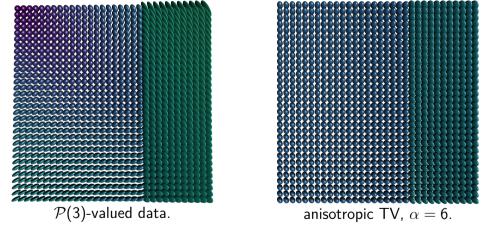
with

• "forward differences" $\Lambda \colon \mathcal{M} \to (T\mathcal{M})^{d_1-1, d_2-1, 2}$,

$$p \mapsto \Lambda(p) = \left((\log_{p_i} p_{i+e_1}, \log_{p_i} p_{i+e_2}) \right)_{i \in \{1, \dots, d_1 - 1\} \times \{1, \dots, d_2 - 1\}}$$

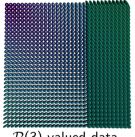
- $\|X\|_{g,s,1}$ similar to a collaborative TV, [Duran, Moeller, Sbert, and Cremers 2016]
- \Rightarrow anisotropic TV (s = 1) and isotropic TV (s = 2)

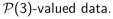
Numerical Example for a $\mathcal{P}(3)$ -valued Image



- ▶ in each pixel we have a symmetric positive definite matrix
- ▶ Applications: denoising/inpainting e.g. of DT-MRI data

Numerical Example for a $\mathcal{P}(3)$ -valued Image





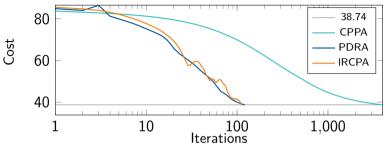
anisotropic TV, $\alpha = 6$.

Approach. CPPA as benchmark

[Bačák 2014; RB, Persch, and Steidl 2016; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

	CPPA	PDRA	IRCPA
	$\lambda_k = \frac{4}{k}$	$\lambda = 0.58$	$\sigma = \tau = 0.4$ $\gamma = 0.2, m = I$
parameters	^	$\beta = 0.93$	$\gamma = 0.2, \ m = I$
iterations	4000	122	113
runtime	1235 s.	380 s.	96.1 s.

Numerical Example for a $\mathcal{P}(3)$ -valued Image



Approach. CPPA as benchmark

[Bačák 2014; RB, Persch, and Steidl 2016; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

	CPPA	PDRA	IRCPA
navamatava	$\lambda_k = \frac{4}{k}$	$\lambda = 0.58$	$\sigma = \tau = 0.4$ $\gamma = 0.2, m = I$
parameters	K	$\beta = 0.93$	$\gamma =$ 0.2, $m = I$
iterations	4000	122	113
runtime	1235 s.	380 s.	96.1 s.

Rosenbrock and First Order Methods

Problem. We consider the classical Rosenbrock example²

$$\arg \min_{x \in \mathbb{R}^2} a(x_1^2 - x_2)^2 + (x_1 - b)^2,$$

where a, b > 0, usually b = 1 and $a \gg b$, here: $a = 2 \cdot 10^5$.

Known Minimizer
$$x^* = \begin{pmatrix} b \\ b^2 \end{pmatrix}$$
 with cost $f(x^*) = 0$.

Goal. Compare first-order methods, e.g. using the (Euclidean) gradient

$$\nabla f(x) = \begin{pmatrix} 4a(x_1^2 - x_2) \\ -2a(x_1^2 - x_2) \end{pmatrix} + \begin{pmatrix} 2(x_1 - b) \\ 0 \end{pmatrix}$$

²available online in ManoptExamples.il

A "Rosenbrock-Metric" on \mathbb{R}^2

In our Riemannian framework, we can introduce a new metric on \mathbb{R}^2 as

$$G_{\!
ho} \coloneqq egin{pmatrix} 1 + 4
ho_1^2 & -2
ho_1 \ -2
ho_1 & 1 \end{pmatrix}, ext{ with inverse } G_{\!
ho}^{-1} = egin{pmatrix} 1 & 2
ho_1 \ 2
ho_1 & 1 + 4
ho_1^2 \end{pmatrix}.$$

We obtain $(X, Y)_p = X^T G_p Y$

The exponential and logarithmic map are given as

$$\exp_p(X) = \begin{pmatrix} p_1 + X_1 \\ p_2 + X_2 + X_1^2 \end{pmatrix}, \qquad \log_p(q) = \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 - (q_1 - p_1)^2 \end{pmatrix}.$$

Manifolds.jl:

Implement these functions on $MetricManifold(\mathbb{R}^2)$, RosenbrockMetric()).

The Riemannian Gradient w.r.t. the new Metric

Let $f: \mathcal{M} \to \mathbb{R}$. Given the Euclidean gradient $\nabla f(p)$, its Riemannian gradient grad $f: \mathcal{M} \to T\mathcal{M}$ is given by

$$\operatorname{grad} f(p) = G_p^{-1} \nabla f(p).$$

While we could implement this denoting $\nabla \mathit{f}(\mathit{p}) = \begin{pmatrix} \mathit{f}_1'(\mathit{p}) & \mathit{f}_2'(\mathit{p}) \end{pmatrix}^\mathsf{T}$ using

$$\left\langle \mathsf{grad}\, \mathit{f}(q), \mathsf{log}_q\, \mathit{p} \right\rangle_q = (\mathit{p}_1 - \mathit{q}_1) \mathit{f}_1'(q) + (\mathit{p}_2 - \mathit{q}_2 - (\mathit{p}_1 - \mathit{q}_1)^2) \mathit{f}_2'(q),$$

but it is automatically done in Manopt.jl.

The Experiment Setup

Algorithms. We now compare

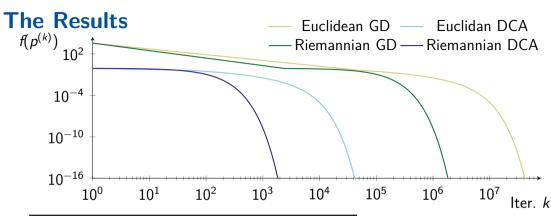
- **1.** The Euclidean gradient descent algorithm on \mathbb{R}^2 ,
- 2. The Riemannian gradient descent algorithm on \mathcal{M} ,
- **3.** The Difference of Convex Algorithm on \mathbb{R}^2 ,
- **4.** The Difference of Convex Algorithm on \mathcal{M} .

For DCA third we split f into f(x) = g(x) - h(x) with

$$g(x) = a(x_1^2 - x_2)^2 + 2(x_1 - b)^2$$
 and $h(x) = (x_1 - b)^2$.

Initial point. $p_0 = \frac{1}{10} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ with cost $f(p_0) \approx 7220.81$.

Stopping Criterion. $d_{\mathcal{M}}(p^{(k)}, p^{(k-1)}) < 10^{-16} \text{ or } \|\text{grad } f(p^{(k)})\|_p < 10^{-16}.$



Algorithm	Runtime	# Iterations
Euclidean GD	305.567 sec.	53 073 227
Euclidean DCA	58.268 sec.	50 588
Riemannian GD	18.894 sec.	2 454 017
Riemannian DCA	7.704 sec.	2 459

Summary

We considered two different ways to generalize the Fenchel conjugate to Riemannian manifolds and how they are used in

- Nonsmooth Riemannian Optimization: m-Fenchel Dual and the Chambolle-Pock algorithm
- Nonconvex Riemannian Optimization: Fenchel Dual and the Difference of Convex algorithm
- Numerics in Julia: Manopt.jl together with ManifoldsBase.jl & Manifolds.jl

Selected References

RB, O. P. Ferreira, E. M. Santos, and J. C. d. O. Souza (2023). The difference of convex algorithm on Hadamard manifolds. arXiv: 2112.05250.

RB, R. Herzog, M. Silva Louzeiro, D. Tenbrinck, and J. Vidal-Núñez (Jan. 2021). "Fenchel duality theory and a primal-dual algorithm on Riemannian manifolds". In: Foundations of Computational Mathematics 21.6, pp. 1465–1504. DOI: 10.1007/s10208-020-09486-5. arXiv: 1908.02022.

Boumal, N. (2023). An introduction to optimization on smooth manifolds. Cambridge University Press. URL: https://www.nicolasboumal.net/book.

Silva Louzeiro, M., RB, and R. Herzog (2022). "Fenchel Duality and a Separation Theorem on Hadamard Manifolds". In: SIAM Journal on Optimization 32.2, pp. 854–873. ISSN: 1052-6234, 1095-7189. DOI: 10.1137/21M1400699. arXiv: 2102.11155

Souza, J. C. d. O. and P. R. Oliveira (2015). "A proximal point algorithm for DC fuctions on Hadamard manifolds". In: *Journal of Global Optimization* 63.4, pp. 797–810. DOI: 10.1007/s10898-015-0282-7

Interested in Numerical Differential Geometry?

Join
numdiffgeo.zulipchat.com!