

An Introduction to Optimization on Riemannian Manifolds

Ronny Bergmann

NTNU, Trondheim, Norway.

Constrained Optimization Methods for Models in Data Fusion, Simula Oslo, Oslo, Norway. March 27, 2023

Motivation: Constraint vs Unconstraint Optimization

We want to consider a special case of constrained optimisation

 $\min_{x \in S} f(x) \operatorname*{arg\,min}_{x \in S} f(x),$

instead of minimal value $f(x^*)$ often minimizer x^* of interest classical: Constrained Optimization. Describe $S \subset \mathbb{R}^n$ with constraints

 $S = \{x \mid g(x) \leq 0 \text{ and } h(x) = 0\}, \qquad g \colon \mathbb{R}^n \to \mathbb{R}^{m_1}, h \colon \mathbb{R}^n \to \mathbb{R}^{m_2}$

special algorithms necessary (ALM, EPM)
 g, *h* might have complicated gradients or be high-dimensional.

today. If S = M is "nice", i.e. a Riemannian manifold M:

• different notion of e.g. gradient and "means to move around" \mathfrak{M} we obtain unconstrained problems on \mathcal{M}

 \Rightarrow use gradient descent, CG, quasi Newton, trust region,... on $\mathcal{M}!$

Overview

- **1.** A few examples
- 2. (embedded) Manifolds & Tangent spaces
- 3. Retractions (moving around on a manifold)
- 4. First order methods (differentials and gradients)
- 5. Algorithms & Software

Literature.

Riemannian Manifolds.

do Carmo 1992; Lee 2018

Optimization on Manifolds.

Absil, Mahony, and Sepulchre 2008; Boumal 2023

NTNU

Example 1: Rayleigh Quotient

Let $A \in \mathbb{R}^{n \times n}$, $A = A^{\mathsf{T}}$, with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ be given. We can find an eigenvector v_1 by

$$\mathop{\arg\min}_{\substack{x\in\mathbb{R}^n\\x\neq 0}} f(x), \qquad f(x) = \frac{\langle x,Ax \rangle}{\langle x,x \rangle}.$$

• Since $Av_1 = \lambda v_1 \Rightarrow f(v_1) = \lambda_1$

 \triangle any scaled αv_1 , $\alpha \neq 0$ is also a minimizer!

 \Rightarrow Newton iteration might even diverge.

Solution. We rephrase the problem to

$$\operatorname*{arg\,min}_{x\in\mathbb{S}^n}\frac{\langle x,Ax\rangle}{\langle x,x\rangle}\langle x,Ax\rangle,\qquad \mathbb{S}^{n-1}=\big\{x\in\mathbb{R}^n\,\big|\,\|x\|=1\big\}$$

An optimisation problem on the (n-1)-sphere in \mathbb{R}^n .

D NTNU

Example 2: multiple Eigenvectors & The Stiefel manifold

Goal. Find a orthonormal basis $X \in \mathbb{R}^{n \times p}$ for the space spanned by v_1, \ldots, v_p corresponding $\lambda_1 \leq \cdots \leq \lambda_p$.

Then we use columns of X an ONB $\Leftrightarrow X^T X = I_p$, the unit matrix $I_p \in \mathbb{R}^{p \times p}$.

We collect all such matrices representing ONBs for any $p\mbox{-dimensional subspace}$ in

$$\mathsf{St}(n,p) \coloneqq \{X \in \mathbb{R}^{n \times p} \mid X^{\mathsf{T}}X = I_p\},\$$

called the Stiefel manifold.

Our optimization problem to find a best basis reads

$$\underset{X \in St(n,p)}{\operatorname{arg min}} f(X), \qquad f(X) = \operatorname{tr}(X^{\mathsf{T}}AX)$$

and at a minimizer X^* we have the minimal value $f(X^*) = \sum_{i=1}^p \lambda_i$.

D NTNU

Example 3: Subspaces & The Grassmann manifold

Observation. The order of basis vectors in the last example is irrelevant. Even more. f(X) = f(Y) for $X, Y \in St(n, p)$ whenever span(X) = span(Y)

Interpretation. Rotating the basis of the subspace to a new basis of the subspace still yields the same value

 \Rightarrow Let's built equivalence classes

$$[X] \coloneqq \big\{ Y \in \mathsf{St}(n,p) \,\big| \, \operatorname{span}(X) = \operatorname{span}(Y) \big\}$$

New Goal. Find the subspace

$$\underset{[X]\in Gr(n,p)}{\operatorname{arg\,min}} g([X]), \qquad g([X]) = \operatorname{tr}(X^{\mathsf{T}}AX)$$

where

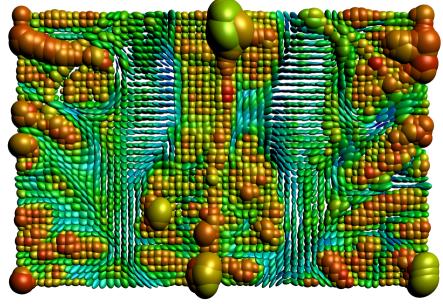
$$\operatorname{Gr}(n,p) \coloneqq \{ [X] \mid X \in \operatorname{St}(n,p) \},\$$

is the Grassmann manifold, i.e. the space of all *p*-dimensional subspaces of \mathbb{R}^n .

Example 4: DT-MRI & Image Denoising $\mathcal{M} = (\mathcal{P}_3)^{n \times m}$ An image of "diffusion tensor pixel" denoising. (\rightarrow) e.g. using ℓ_2 -TV

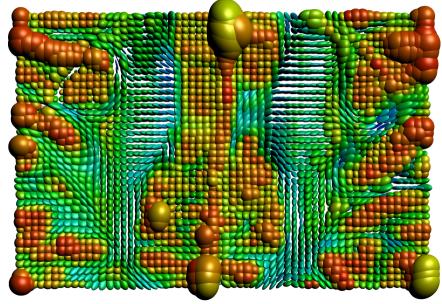
NTNU

Example 4: DT-MRI & Image Denoising



NTNU

Example 4: DT-MRI & Image Denoising



NTNU

Intuition to Tangent space & (sub)manifolds

Intuitive Definition. A (smooth, Riemannian) manifold \mathcal{M} is a set that "locally looks like" \mathbb{R}^d \Rightarrow Collecting all derivatives c'(0) of curves $c: I \rightarrow \mathcal{M}$ through c(0) = pWe obtain a "space of directions"

Example. For the sphere $\mathbb{S}^{n-1} \subset \mathbb{R}^n$ at c(0) = p fulfils $p^T p = ||p||^2 = 1$. Hence

$$c'(t) \in T_p \mathbb{S}^{n-1} := \{ X \in \mathbb{R}^n \, | \, X^\mathsf{T} p + p^\mathsf{T} X = 0 \} = \{ X \in \mathbb{R}^n \, | \, X^\mathsf{T} p = 0 \}$$

is a (n-1)-dimensional vector space called the tangent space $\mathcal{T}_p \mathbb{S}^{n-1}$ at p.

In general. In order to have a manifold, this "looks like" \mathbb{R}^d always has to be the same dimension d.

Embedded submanifold & Tangent spaces

Definition (Boumal 2023, Def. 3.10,)

Let \mathcal{E} be a linear space of dimension *n*. A nonempty subset \mathcal{M} of \mathcal{E} is a (smooth) embedded submanifold of \mathcal{E} of dimension *d* if either

1. d = n and \mathcal{M} is open in \mathcal{E}

d = n - k for some k ≥ 1 and for each p ∈ M there exists a neighbourhood U ⊂ E and h: U → R^k such that
 21 If n ∈ U then h(x) = 0 w n ∈ M

2.1 If
$$y \in \mathcal{U}$$
 then $h(y) = 0 \Leftrightarrow y \in \mathcal{M}$

2.2 rank
$$Dh(p) = k$$

Tangent space. The rank condition ensures that ker Dh(p) is *d*-dimensional. This also forms a vector space, the tangent soace $T_p\mathcal{M}$ at *p*.

- ▶ inherits an inner product by restriction from \mathcal{E} , denoted by $\langle \cdot, \cdot \rangle_p$
- the disjoint union of all $\mathcal{T}_p\mathcal{M}$ is the tangent bundle $T\mathcal{M}$ with elements (p, X).

For \mathbb{S}^{n-1} even more: we one global $h(p) = ||p||^2 - 1$ with ker $Dh(p) = \{X \in \mathbb{R}^n \mid \langle X, p \rangle = 0\}.$

Smooth functions and their Differential

Smooth functions. A function $f: \mathcal{M} \to \mathbb{R}$ is called smooth if it is given (locally) as the restriction of a function $\overline{f}: \to \mathbb{R}$, i.e. $f = \overline{f}|_{\mathcal{M}}$

The (Euclidean) Differential. Classically (for the embedded \overline{f}) we have

$$D\overline{f}(x)[v] = \lim_{t \to 0} \frac{\overline{f}(x+tv) - \overline{f}(x)}{t}$$

but for f we have the problem that x + tv is not necessarily on \mathcal{M} !

Idea. use as "directions" in the directional derivative the curves $c: I \to M$ with $c: I \to M, c(0) = p, c'(0) = X$ and define

The Differential of $f: \mathcal{M} \to \mathbb{R}$.

$$Df(p)[X] \coloneqq \frac{\mathsf{d}}{\mathsf{d}t}f(c(t)),$$

Fortunately. Both are equivalent, i.e. restricting the Euclidean differential to $T_p\mathcal{M}$ yields the Riemannian one: $Df(p) = D\bar{f}(p)|_{T_p\mathcal{M}}$.

Retractions: Moving around on a Manifold.

Iterative Algorithms usually are at some point x, find a (descent) direction v and a step size s and obtain $x^{(k+1)} = x^{(k)} + sv$

How to move on \mathcal{M} given some $p^{(k)}$ and a $X \in T_p \mathcal{M}$?

Definition (Boumal 2023, Def. 3.47)

A retraction on a manifold ${\mathcal M}$ is a smooth map

$$R: T\mathcal{M} \to \mathcal{M}, \qquad (p, X) \mapsto R_p(X) \in \mathcal{M}$$

such that each curve $c(t) = R_p(tX)$ satisfies c(0) = p, c'(0) = X.

Example 1. on $\mathcal{M} = \mathbb{S}^{n-1}$ one can use $R_p(X) = \frac{p+X}{\|p+X\|}$

Example 2. on $\mathcal{M} = \mathbb{S}^{n-1}$ one can use $R_p(X) = \cos(||X||_p)p + \sin(||X||_p)\frac{X}{||X||_p}$ \Rightarrow we trace great circles (shortest paths) This retraction has a special name: the exponential map $\exp_p X$.

The Riemannian Gradient

Definition (Boumal 2023, Def. 3.58)

Let $f: \mathcal{M} \to \mathbb{R}$ be smooth on a Riemannian manifold \mathcal{M} The Riemannian gradient of f is the vector field grad f on \mathcal{M} uniquely defined by the following identities:

For all $(p, X) \in T\mathcal{M}$ it holds $Df(p)[X] = \langle X, \operatorname{grad} f(p) \rangle_p$,

where *Df* denotes the differential.

- ▶ grad $f(p) \in T_p M$ is the (tangent) direction of steepest ascent
- ▶ for the embedded Riemannian submanifolds: grad $f = \text{proj}_{T_p\mathcal{M}}(\text{grad}\,\overline{f}(p))$
- (like in \mathbb{R}^n :) p is a critical point of $f \Leftrightarrow \operatorname{grad} f(p) = 0 \in T_p \mathcal{M}$.

Gradient Descent

Euclidean Gradient Descent. $x^{(k+1)} = x^{(k)} - \alpha_k \operatorname{grad} f(x^{(k)})$ for some $\alpha_k > 0$.

Riemannian Gradient Descent.

Use the Riemannian gradient and replace "-".

Input: $p^{(0)} \in \mathcal{M}$

- 1: $k \leftarrow 0$
- 2: while not converged do

3: Pick a step size
$$\alpha_k > 0$$

4: $p^{(k+1)} = R_{p^{(k)}}(-\alpha_k s^{(k)}), \quad s^{(k)} = \operatorname{grad} f(p^{(k)})$
5: $k \leftarrow k+1$

6: end while Output: $p^{(N)}$

Stepsize. For example: Armijo line-search along $\varphi(t) = f(R_{p^{(k)}}(-ts^{(k)}))$

Stopping Criteria & the Distance on a manifold

Variant 1. The inner product $\langle \cdot, \cdot \rangle_p$ induces a norm $\|\cdot\|_p$ on any $\mathcal{T}_p\mathcal{M}$.

 \Rightarrow Given a tolerance $\varepsilon_1 > 0$ stop when $\|$ grad $f(p^{(k)})\|_{p^{(k)}} < \varepsilon_1$

Variant 2. There is a measure of length for curves $c: I \to \mathcal{M}$ induced by $\langle \cdot, \cdot \rangle_p$. Introduce a distance $d_{\mathcal{M}}(p, q)$ as the length of the shortest curve connecting both (a shortest geodesic).

 \Rightarrow Given a tolerance $\varepsilon_2 > 0$ stop when $d_{\mathcal{M}}(p^{(k-1)}, p^{(k)}) < \varepsilon_2$

Variant 3. ...as a fallback of course after a maximal number N of iterations.

"Comparing" points and vectors

For Quasi Newton one classically (Euclidean) needs for the secant equation $rac{(k)}{(k-1)} = \frac{1}{k}$

•
$$y^{(k)} = \text{grad } f(x^{(k+1)}) - \text{grad } f(x^{(k)})$$

Problem 1. We do not have a difference of points. \Rightarrow Interpret d = z - x is the direction pointing from x to z.

Q We are looking for X such that $R_p(X) = q$ or the inverse retraction $R_p^{-1}(q)$! For the special case of $R_p = \exp_p$ the inverse is called logarithmic map $\log_p \cdot$. **Obs!** the logarithmic map is often not globally defined.

Problem 2. For two gradients grad $f(p) \in T_p \mathcal{M}$ and grad $f(q) \in T_q \mathcal{M}$ the difference is not defined, because they live in different spaces

 \bigcirc We need a function $T_{q\leftarrow p}$ to "transport" tangent vectors.

Vector Transport

Definition (Absil, Mahony, and Sepulchre 2008, Def. 8.1.1)

Let \mathcal{M} be a manifold, and $p \in \mathcal{M}$ and $X \in T_p \mathcal{M}$.

Then a vector transport $T_{p,X}: T_p\mathcal{M} \to T_q\mathcal{M}$ is a smooth mapping associated to a retraction with $R_p(X) = q$ such that

1.
$$\mathcal{T}_{p,X}Y \in \mathcal{T}_q\mathcal{M}$$

2.
$$\mathcal{T}_{p,0_p}Y = Y$$
 for all $Y \in \mathcal{T}_p\mathcal{M}$,

3.
$$\mathcal{T}_{p,X}(\alpha Y + \beta Z) = \alpha T_{p,X}Y + \beta T_{p,X}Z$$
 for all $\alpha, \beta \in \mathbb{R}$, $Y, Z \in T_p\mathcal{M}$ hold.

Alternative Notation. $T_{q\leftarrow p}$ as long as X such that $q = R_p(X)$ is uniquely defined.

Special case. There exists a vector transport that preserves norms $||Y||_p = ||T_{p,X}Y||_q$ and angles $\langle Y, Z \rangle_p = \langle T_{p,X}Y, T_{p,X}Z \rangle_q$. This vector transport is called parallel transport $P_{p,X}$ or $P_{q \leftarrow p}$.

Quasi Newton – Idea

For the Hessian of f we can also start intuitively: How does the gradient grad f change?

Given a point $p \in M$ and a direction $X \in T_pM$ we introduce again a curve $c(t) = R_p(tX)$ to define¹

$$\operatorname{Hess} f(p)[X] \coloneqq \lim_{t \to 0} \frac{T_{p \leftarrow c(t)} \operatorname{grad} f(c(t)) - \operatorname{grad} f(p)}{t}$$

Newton equation. We can find a descent direction $X \in T_{p^{(k)}}\mathcal{M}$ by solving

$$\operatorname{Hess} f(p^{(k)})[X] = -\operatorname{grad} f(p^{(k)})$$

Goal. Approximate Hess $f(p^{(k)}) \approx \mathcal{H}_k$: $T_p \mathcal{M} \to T_p \mathcal{M}$.

¹formerly done using a connection ∇ which "describes how the metric changes" and then define Hess $f(p)[X] = \nabla_X \operatorname{grad} f(p)$.

The Riemannian Secant equation

We want to choose \mathcal{H}_{k+1} such that it fulfils the secant equation

$$\mathcal{H}_{k+1}[s^{(k)}] = y^{(k)}$$
 or equivalently $\mathcal{B}_{k+1}[y^{(k)}] = s^{(k)}$

where

Updates similar to the Euclidean case for both \mathcal{H}_{k+1} or \mathcal{B}_{k+1}

- BFGS
- DFP
- Broyden
- Iimited memory BFGS
- Symmetric Rank 1 (SR1)

[Huang, Absil, and Gallivan 2018]

[Huang, Gallivan, and Absil 2015]

Implementing Manifolds & Optimisation – in Julia.

Goals.

- abstract definition of manifolds and properties thereon
 e. g. different metrics, retractions, embeddings
- $\Rightarrow\,$ implement abstract algorithms for generic manifolds
- easy to implement own manifolds & easy to use
- well-documented and well-tested
- ► fast.

Why 🖡 Julia?

- high-level language, properly typed
- multiple dispatch (cf. f(x), f(x::Number), f(x::Int))
- just-in-time compilation, solves two-language problem
- ▶ I like the language and the community.

D NTNU

Implementing a Riemannian Manifold

 $\begin{array}{l} \texttt{ManifoldsBase.jl uses a AbstractManifold} \{\mathbb{F}\} \text{ with type parameter } \mathbb{F} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\} \\ \texttt{to provide an interface for implementing functions like} \end{array}$

- inner(M, p, X, Y) for the Riemannian metric $\langle X, Y \rangle_p$
- exp(M, p, X) and log(M, p, q),
- ▶ more general: retract(M, p, X, m), where m is a retraction method
- similarly: parallel_transport(M, p, X, q) and

vector_transport_to(M, p, X, q, m)

for your manifold M a subtype of the $AbstractManifold{\mathbb{F}}$.

 \bigcirc mutating version exp!(M, q, p, X) works in place in q

M basis for generic algorithms working on any Manifold and generic functions like norm(M,p,X), geodesic(M, p, X) and shortest_geodesic(M, p, q)

 ${\cal O}$ juliamanifolds.github.io/ManifoldsBase.jl/

Manifolds.jl – A library of manifolds in Julia

Manifolds.jl is build upon ManifoldsBase.jl interface.

Features.

- different metrics
- Lie groups
- Build manifolds using
 - $\blacktriangleright \text{ Product manifold } \mathcal{M}_1 \times \mathcal{M}_2$
 - Power manifold *M^{n×m}*
 - Tangent bundle
- Quotient manifolds
- Embedded manifolds
- perform statistics
- well-documented, including formulae and references
- \blacktriangleright well-tested, >98 % code cov.

Manifolds. For example

- (unit) Sphere, Circle & Torus
- Fixed Rank Matrices
- ► (Generalized) Stiefel & Grassmann
- Hyperbolic space
- Rotations, O(n), SO(n), SU(n)
- several further Lie groups
- Symmetric positive definite matrices
- Symplectic & Symplectic Stiefel
- Kendall's shape space

► ...

juliamanifolds.github.io/Manifolds.jl/
 JuliaCon 2020 youtu.be/md-FnDGCh9M



Manopt.jl – A framework

Goal. Provide optimisation algorithms on Riemannian manifolds, using ManifoldsBase.jl to work on any manifold from Manifolds.jl.

Generic Framework.

- AbstractManifoldProblem p contains static information: *M*, *f*, grad *f*,...
- AbstractManoptSolverState s specifies a solver, stores its parameters and values
- For your own solver, implement
 - initialize_solver!(p, s)
 - step_solver!(p, s, i)

To run an algorithm: solve!(p, s)

High level interfaces. E.g.

gradient_descent(M, f, grad_f, p0)

setup problem & state, run the algorithm.

Easy access to

- debug, record & status
- step size algorithms
- (modular) stopping criteria.

Manopt Family.

Manopt.jl – Algorithms

Derivative-free

- Nelder-Mead
- Particle Swarm

First order

- Gradient descent: Alternating, Conjugate Gradient, Momentum, Nesterov, Stochastic
- Subgradient Method
- Quasi Newton
 L-BFGS, BFGS, DFP, Broyden, SR1, ...
- Levenberg Marquardt

Proximal map based

- Cyclic Proximal Point Algorithm
- Douglas-Rachford

Primal-Dual

- Chambolle-Pock
- Primal-Dual Semismooth Newton

Second order

Trust Regions with TCG sub-solver

Constrained

Augmented Lagrangian Method

JuliaCon 2022 youtu.be/thbekfsyhCE

- Exact Penalty Method
- Frank-Wolfe Method

Code Example: Rayleigh Quotient

For the Rayleigh quotient

$$f(p) = p^{\mathsf{T}} A p$$

on the sphere $\mathcal{M} = \mathbb{S}^{n-1}$ we can easily state the Riemannian gradient can also be stated direction (or using the projection)

$$\mathsf{grad}\ \mathit{f}(\mathit{p}) = 2(\mathit{I_n} - \mathit{pp}^\mathsf{T})A\mathit{p}$$

Let's take a look at the numerics

Outlook: Constrained Optimisation on Manifolds

One can consider problems like

[Liu and Boumal 2019; RB and Herzog 2019]

 $rgmin_{p\in\mathcal{M}} f(p)$ subject to $g_i(p)\leq 0, \quad i=1,\ldots,m$ $h_j(p)=0, \quad j=1,\ldots,p$

where $g_i, h_i: \mathcal{M} \to \mathbb{R}$ describe constraints to p.

 \Rightarrow Classical algorithms (ALM, EPM) adapted

falconlightbulb We can choose our own trade-off between geometry and constraint.

Software packages – An Overview

 We^2 founded the $\tt JuliaManifolds,$ GitHub Community for manifold related packages in Julia

Currently our main packages are (ordered by age) Manopt.jl Optimisation on Riemannian manifolds, based on ManifoldsBase.jl [RB 2022]

Manifolds.jl A library of Riemannian manifolds and Lie groups area, RB, and Rzecki 2021]

ManifoldsBase.jl A lightweight interface to implement and work on manifolds ManifoldDiff.jl (automatic) differentiation on Riemannian manifolds and a function library of differentials, gradients,...

ManifoldDiffEq.jl differential equations on Riemannian manifolds ManoptExamples.jl A collection of examples and benchmarks for Manopt.jl

²Seth Axen, U Tübingen; Mateusz Baran, AGH Krakow; RB, NTNU

Summary

- \blacktriangleright constrained optimization turns into unconstraint optimization on a manifold ${\cal M}$
- many algorithms can (and have been) generalized to manifolds
- Implementations exist in several languages
- ${ig Q}$ We considered manifolds and algorithms in Julia

Outlook

- manifolds can be defined more general, without an embedding
- numerically we embed somewhere to represent points as arrays
- Riemannian Hessians
- Euclidean AD tools can be used (with some post-processing) to compute Riemannian gradients and Hessians

Selected References

- Absil, P.-A., R. Mahony, and R. Sepulchre (2008). *Optimization Algorithms on Matrix Manifolds*. Princeton University Press. DOI: 10.1515/9781400830244.
- RB and R. Herzog (2019). "Intrinsic formulation of KKT conditions and constraint qualifications on smooth manifolds". In: SIAM Journal on Optimization 29.4, pp. 2423–2444. DOI: 10.1137/18M1181602. arXiv: 1804.06214.
- Boumal, N. (2023). An introduction to optimization on smooth manifolds. Cambridge University Press. URL: https://www.nicolasboumal.net/book.
- do Carmo, M. P. (1992). *Riemannian Geometry*. Mathematics: Theory & Applications. Boston, MA: Birkhäuser Boston, Inc.
- Huang, W., P.-A. Absil, and K. A. Gallivan (2018). "A Riemannian BFGS method without differentiated retraction for nonconvex optimization problems". In: SIAM Journal on Optimization 28.1, pp. 470–495. DOI: 10.1137/17M1127582.
- Lee, J. M. (2018). Introduction to Riemannian Manifolds. Springer International Publishing. DOI: 10.1007/978-3-319-91755-9.
- Liu, C. and N. Boumal (Mar. 2019). "Simple algorithms for optimization on Riemannian manifolds with constraints". In: Applied Mathematics & Optimization. DOI: 10.1007/s00245-019-09564-3.

Selected Software References

- Axen, S. D., M. Baran, RB, and K. Rzecki (2021). Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds. arXiv: 2106.08777.
- RB (2022). "Manopt.jl: Optimization on Manifolds in Julia". In: Journal of Open Source Software 7.70, p. 3866. DOI: 10.21105/joss.03866.
- Boumal, N., B. Mishra, P.-A. Absil, and R. Sepulchre (2014). "Manopt, a Matlab toolbox for optimization on manifolds". In: *The Journal of Machine Learning Research* 15, pp. 1455–1459. URL: https://www.jmlr.org/papers/v15/boumal14a.html.
- Miolane, N. et al. (2020). "Geomstats: A Python Package for Riemannian Geometry in Machine Learning". In: Journal of Machine Learning Research 21.223, pp. 1–9. URL: http://jmlr.org/papers/v21/19-027.html.
- Townsend, J., N. Koep, and S. Weichwald (2016). "Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation". In: Journal of Machine Learning Research 17.137, pp. 1–5. URL: http://jmlr.org/papers/v17/16-177.html.

C ronnybergmann.net/talks/2023-Oslo-Intro-Manopt.pdf