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Motivation: Constraint vs Unconstraint Optimization
We want to consider a special case of constrained optimisation

min
x∈S

f(x) argmin
x∈S

f(x),

instead of minimal value f(x∗) often minimizer x∗ of interest
classical: Constrained Optimization. Describe S ⊂ Rn with constraints

S =
{

x
∣∣ g(x) ≤ 0 and h(x) = 0

}
, g : Rn → Rm1 , h : Rn → Rm2

▶ special algorithms necessary (ALM, EPM)
g, h might have complicated gradients or be high-dimensional.

today. If S =M is “nice”, i. e. a Riemannian manifold M:
▶ different notion of e. g. gradient and “means to move around”

we obtain unconstrained problems on M
⇒ use gradient descent, CG, quasi Newton, trust region,... on M!
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Overview

1. A few examples
2. (embedded) Manifolds & Tangent spaces
3. Retractions (moving around on a manifold)
4. First order methods (differentials and gradients)
5. Algorithms & Software

Literature.
▶ Riemannian Manifolds. do Carmo 1992; Lee 2018
▶ Optimization on Manifolds.

Absil, Mahony, and Sepulchre 2008; Boumal 2023
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Example 1: Rayleigh Quotient
Let A ∈ Rn×n, A = AT, with eigenvalues λ1 ≤ · · · ≤ λn be given.
We can find an eigenvector v1 by

argmin
x∈Rn
x̸=0

f(x), f(x) = 〈x,Ax〉
〈x, x〉 .

▶ Since Av1 = λv1 ⇒ f(v1) = λ1

any scaled αv1, α 6= 0 is also a minimizer!
⇒ Newton iteration might even diverge.

Solution. We rephrase the problem to

argmin
x∈Sn

〈x,Ax〉
〈x, x〉 〈x,Ax〉, Sn−1 =

{
x ∈ Rn ∣∣ ‖x‖ = 1

}
An optimisation problem on the (n− 1)-sphere in Rn.
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Example 2: multiple Eigenvectors & The Stiefel manifold
Goal. Find a orthonormal basis X ∈ Rn×p for the space spanned by v1, . . . , vp
corresponding λ1 ≤ · · · ≤ λp.

Then we use columns of X an ONB ⇔ XTX = Ip, the unit matrix Ip ∈ Rp×p.

We collect all such matrices representing ONBs for any p-dimensional subspace
in

St(n, p) := {X ∈ Rn×p |XTX = Ip},

called the Stiefel manifold.

Our optimization problem to find a best basis reads

argmin
X∈St(n,p)

f(X), f(X) = tr(XTAX)

and at a minimizer X∗ we have the minimal value f(X∗) =
p∑

i=1
λi.
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Example 3: Subspaces & The Grassmann manifold
Observation. The order of basis vectors in the last example is irrelevant.
Even more. f(X) = f(Y) for X,Y ∈ St(n, p) whenever span(X) = span(Y)

Interpretation. Rotating the basis of the subspace to a new basis of the
subspace still yields the same value
⇒ Let’s built equivalence classes

[X] :=
{

Y ∈ St(n, p)
∣∣ span(X) = span(Y)

}
New Goal. Find the subspace

argmin
[X]∈Gr(n,p)

g([X]), g([X]) = tr(XTAX)

where
Gr(n, p) :=

{
[X]

∣∣X ∈ St(n, p)
}
,

is the Grassmann manifold, i. e. the space of all p-dimensional subspaces of Rn.
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Example 4: DT-MRI & Image Denoising
M = (P3)n×m

An image of
“diffusion tensor pixel”

denoising.

e. g. using ℓ2−TV
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Example 4: DT-MRI & Image Denoising
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Example 4: DT-MRI & Image Denoising
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Intuition to Tangent space & (sub)manifolds

Intuitive Definition. A (smooth, Riemannian) manifold M is a set that
“locally looks like” Rd

⇒ Collecting all derivatives c′(0) of curves c : I→M through c(0) = p
We obtain a “space of directions”

Example. For the sphere Sn−1 ⊂ Rn at c(0) = p fulfils pTp = ‖p‖2 = 1.
Hence

c′(t) ∈ TpSn−1 := {X ∈ Rn |XTp + pTX = 0} = {X ∈ Rn |XTp = 0}

is a (n− 1)-dimensional vector space called the tangent space TpSn−1 at p.

In general. In order to have a manifold, this “looks like” Rd always has to be
the same dimension d.
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Embedded submanifold & Tangent spaces
Definition (Boumal 2023, Def. 3.10,)
Let E be a linear space of dimension n. A nonempty subset M of E is a
(smooth) embedded submanifold of E of dimension d if either

1. d = n and M is open in E
2. d = n− k for some k ≥ 1 and for each p ∈M there exists a

neighbourhood U ⊂ E and h : U → Rk such that
2.1 If y ∈ U then h(y) = 0⇔ y ∈M
2.2 rankDh(p) = k

Tangent space. The rank condition ensures that kerDh(p) is d-dimensional.
This also forms a vector space, the tangent soace TpM at p.
▶ inherits an inner product by restriction from E , denoted by 〈·, ·〉p
▶ the disjoint union of all TpM is the tangent bundle TM with elements

(p,X).
For Sn−1 even more: we one global h(p) = ‖p‖2 − 1 with
kerDh(p) = {X ∈ Rn | 〈X, p〉 = 0}.
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Smooth functions and their Differential
Smooth functions. A function f :M→ R is called smooth if it is given
(locally) as the restriction of a function f̄ : →R, i.e. f = f̄

∣∣
M

The (Euclidean) Differential. Classically (for the embedded f̄) we have

Df̄(x)[v] = lim
t→0

f̄(x + tv)− f̄(x)
t

but for f we have the problem that x + tv is not necessarily on M!

Idea. use as “directions” in the directional derivative
the curves c : I→M with c : I→M, c(0) = p, c′(0) = X and define

The Differential of f :M→ R.

Df(p)[X] := d
dt f(c(t)),

Fortunately. Both are equivalent, i. e. restricting the Euclidean differential to
TpM yields the Riemannian one: Df(p) = Df̄(p)

∣∣
TpM.
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Retractions: Moving around on a Manifold.
Iterative Algorithms usually are at some point x, find a (descent) direction v
and a step size s and obtain x(k+1) = x(k) + sv

How to move on M given some p(k) and a X ∈ TpM?
Definition (Boumal 2023, Def. 3.47)
A retraction on a manifold M is a smooth map

R : TM→M, (p,X) 7→ Rp(X) ∈M

such that each curve c(t) = Rp(tX) satisfies c(0) = p, c′(0) = X.

Example 1. on M = Sn−1 one can use Rp(X) = p+X
∥p+X∥

Example 2. on M = Sn−1 one can use Rp(X) = cos
(
‖X‖p

)
p + sin

(
‖X‖p

) X
∥X∥p

⇒ we trace great circles (shortest paths)
This retraction has a special name: the exponential map expp X.
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The Riemannian Gradient

Definition (Boumal 2023, Def. 3.58)
Let f :M→ R be smooth on a Riemannian manifold M
The Riemannian gradient of f is the vector field grad f on M uniquely defined
by the following identities:

For all (p,X) ∈ TM it holds Df(p)[X] = 〈X, grad f(p)〉p,

where Df denotes the differential.
▶ grad f(p) ∈ TpM is the (tangent) direction of steepest ascent
▶ for the embedded Riemannian submanifolds: grad f = projTpM(grad f̄(p))
▶ (like in Rn:) p is a critical point of f ⇔ grad f(p) = 0 ∈ TpM.
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Gradient Descent

Euclidean Gradient Descent. x(k+1) = x(k) − αk grad f(x(k)) for some αk > 0.

Riemannian Gradient Descent.
Use the Riemannian gradient and replace “−”.

Input: p(0) ∈M
1: k← 0
2: while not converged do
3: Pick a step size αk > 0
4: p(k+1) = Rp(k)

(
−αks(k)

)
, s(k) = grad f(p(k))

5: k← k + 1
6: end while

Output: p(N)

Stepsize. For example: Armijo line-search along φ(t) = f
(
Rp(k)(−ts(k))

)
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Stopping Criteria & the Distance on a manifold

Variant 1. The inner product 〈·, ·〉p induces a norm ‖·‖p on any TpM.

⇒ Given a tolerance ε1 > 0 stop when ‖grad f(p(k))‖p(k) < ε1

Variant 2. There is a measure of length for curves c : I→M induced by 〈·, ·〉p.
Introduce a distance dM(p, q) as the length of the shortest curve connecting
both (a shortest geodesic).

⇒ Given a tolerance ε2 > 0 stop when dM(p(k−1), p(k)) < ε2

Variant 3. ...as a fallback of course after a maximal number N of iterations.
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“Comparing” points and vectors

For Quasi Newton one classically (Euclidean) needs for the secant equation
▶ s(k) = x(k+1) − x(k)
▶ y(k) = grad f(x(k+1))− grad f(x(k))

Problem 1. We do not have a difference of points.
⇒ Interpret d = z− x is the direction pointing from x to z.

We are looking for X such that Rp(X) = q or the inverse retraction R−1
p (q)!

For the special case of Rp = expp the inverse is called logarithmic map logp ·.
Obs! the logarithmic map is often not globally defined.

Problem 2. For two gradients grad f(p) ∈ TpM and grad f(q) ∈ TqM the
difference is not defined, because they live in different spaces

We need a function Tq←p to “transport” tangent vectors.
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Vector Transport
Definition (Absil, Mahony, and Sepulchre 2008, Def. 8.1.1)
Let M be a manifold, and p ∈M and X ∈ TpM.

Then a vector transport Tp,X : TpM→ TqM is a smooth mapping associated
to a retraction with Rp(X) = q such that

1. Tp,XY ∈ TqM
2. Tp,0pY = Y for all Y ∈ TpM,
3. Tp,X(αY + βZ) = αTp,XY + βTp,XZ for all α, β ∈ R, Y,Z ∈ TpM

hold.

Alternative Notation. Tq←p as long as X such that q = Rp(X) is uniquely
defined.

Special case. There exists a vector transport that preserves
norms ‖Y‖p = ‖Tp,XY‖q and angles 〈Y,Z〉p = 〈Tp,XY,Tp,XZ〉q.
This vector transport is called parallel transport Pp,X or Pq←p.
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Quasi Newton – Idea

For the Hessian of f we can also start intuitively: How does the gradient grad f
change?

Given a pointp ∈M and a direction X ∈ TpM we introduce again a curve
c(t) = Rp(tX) to define1

Hess f(p)[X] := lim
t→0

Tp←c(t) grad f(c(t))− grad f(p)
t

Newton equation. We can find a descent direction X ∈ Tp(k)M by solving

Hess f(p(k))[X] = − grad f(p(k))

Goal. Approximate Hess f(p(k)) ≈ Hk : TpM→ TpM.

1formerly done using a connection ∇ which “describes how the metric changes”
and then define Hess f(p)[X] = ∇X grad f(p).
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The Riemannian Secant equation
We want to choose Hk+1 such that it fulfils the secant equation

Hk+1[s(k)] = y(k) or equivalently Bk+1[y(k)] = s(k)

where
▶ s(k) = Tp(k+1)←p(k)R−1

p(k)p(k+1)

▶ y(k) = grad f(p(k+1))− Tp(k+1)←p(k) grad f(p(k+1)).

Updates similar to the Euclidean case for both Hk+1 or Bk+1
▶ BFGS [Huang, Absil, and Gallivan 2018]

▶ DFP
▶ Broyden [Huang, Gallivan, and Absil 2015]

▶ limited memory BFGS
▶ Symmetric Rank 1 (SR1)
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Implementing Manifolds & Optimisation – in Julia.
Goals.
▶ abstract definition of manifolds and properties thereon

e. g. different metrics, retractions, embeddings
⇒ implement abstract algorithms for generic manifolds
▶ easy to implement own manifolds & easy to use
▶ well-documented and well-tested
▶ fast.

Why Julia?
▶ high-level language, properly typed
▶ multiple dispatch (cf. f(x), f(x::Number), f(x::Int))
▶ just-in-time compilation, solves two-language problem
▶ I like the language – and the community.
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Implementing a Riemannian Manifold

ManifoldsBase.jl uses a AbstractManifold{F} with type parameter F ∈ {R,C,H}
to provide an interface for implementing functions like
▶ inner(M, p, X, Y) for the Riemannian metric 〈X ,Y〉p
▶ exp(M, p, X) and log(M, p, q),
▶ more general: retract(M, p, X, m), where m is a retraction method
▶ similarly: parallel_transport(M, p, X, q) and

vector_transport_to(M, p, X, q, m)

for your manifold M a subtype of the AbstractManifold{F}.

mutating version exp!(M, q, p, X) works in place in q

basis for generic algorithms working on any Manifold and generic functions
like norm(M,p,X), geodesic(M, p, X) and shortest_geodesic(M, p, q)

juliamanifolds.github.io/ManifoldsBase.jl/

https://juliamanifolds.github.io/ManifoldsBase.jl/
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Manifolds.jl – A library of manifolds in Julia
[Axen, Baran, RB, and Rzecki 2021]Manifolds.jl is build upon ManifoldsBase.jl interface.

Features.
▶ different metrics
▶ Lie groups
▶ Build manifolds using

▶ Product manifold M1 ×M2
▶ Power manifold Mn×m

▶ Tangent bundle
▶ Quotient manifolds
▶ Embedded manifolds
▶ perform statistics
▶ well-documented, including

formulae and references
▶ well-tested, >98 % code cov.

Manifolds. For example
▶ (unit) Sphere, Circle & Torus
▶ Fixed Rank Matrices
▶ (Generalized) Stiefel & Grassmann
▶ Hyperbolic space
▶ Rotations, O(n), SO(n), SU(n)
▶ several further Lie groups
▶ Symmetric positive definite matrices
▶ Symplectic & Symplectic Stiefel
▶ Kendall’s shape space
▶ ...

juliamanifolds.github.io/Manifolds.jl/
JuliaCon 2020 youtu.be/md-FnDGCh9M

https://juliamanifolds.github.io/Manifolds.jl/
https://youtu.be/md-FnDGCh9M
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Benchmark of logp Hyperbolic space Hn

For n = 2, 3, 22, 23, 24, 25, 210, 215, 220 we compare

101 102 103 104 105 106
10−2

100

102

104

106

manifold dimension n

tim
e

[µ
s]

Geomstats (Autograd)

Geomstats (NumPy)

Geomstats (PyTorch)

Geomstats (TensorFlow)

Geoopt
Manopt
TensorFlow RiemOpt
Manifolds.jl

For n > 216: PyTorch & TensorFlow based packages faster.
...we could maybe try using LazyArrays.jl in Julia.
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Manopt.jl – A framework
Goal. Provide optimisation algorithms on Riemannian manifolds,
using ManifoldsBase.jl to work on any manifold from Manifolds.jl.

Generic Framework.
▶ AbstractManifoldProblem p

contains static information:
M, f, grad f,...

▶ AbstractManoptSolverState s
specifies a solver, stores
its parameters and values

For your own solver, implement
▶ initialize_solver!(p, s)

▶ step_solver!(p, s, i)

To run an algorithm: solve!(p, s)

High level interfaces. E.g.
gradient_descent(M, f, grad_f, p0)

setup problem & state, run the algorithm.

Easy access to
▶ debug, record & status
▶ step size algorithms
▶ (modular) stopping criteria.

Manopt Family.
manoptjl.org [RB 2022]

manopt.org [Boumal, Mishra, Absil, and Sepulchre 2014]

pymanopt.org [Townsend, Koep, and Weichwald 2016]

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org
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Manopt.jl – Algorithms
Derivative-free
▶ Nelder-Mead
▶ Particle Swarm

First order
▶ Gradient descent:

Alternating, Conjugate Gradient,
Momentum, Nesterov, Stochastic

▶ Subgradient Method
▶ Quasi Newton

L-BFGS, BFGS, DFP, Broyden, SR1, ...
▶ Levenberg Marquardt

Proximal map based
▶ Cyclic Proximal Point Algorithm
▶ Douglas-Rachford

Primal-Dual
▶ Chambolle-Pock
▶ Primal-Dual Semismooth Newton

Second order
▶ Trust Regions with TCG sub-solver

Constrained
▶ Augmented Lagrangian Method
▶ Exact Penalty Method
▶ Frank-Wolfe Method

manoptjl.org
JuliaCon 2022 youtu.be/thbekfsyhCE

https://manoptjl.org
https://youtu.be/thbekfsyhCE
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Code Example: Rayleigh Quotient

For the Rayleigh quotient
f(p) = pTAp

on the sphere M = Sn−1 we can easily state the Riemannian gradient can also
be stated direction (or using the projection)

grad f(p) = 2(In − ppT)Ap

Let’s take a look at the numerics
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Outlook: Constrained Optimisation on Manifolds

One can consider problems like
[Liu and Boumal 2019; RB and Herzog 2019]

argmin
p∈M

f(p)

subject to gi(p) ≤ 0, i = 1, . . . ,m
hj(p) = 0, j = 1, . . . , p

where gi, hj :M→ R describe constraints to p.

⇒ Classical algorithms (ALM, EPM) adapted

faIconlightbulb We can choose our own trade-off between geometry and
constraint.
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Software packages – An Overview
We2 founded the JuliaManifolds, GitHub Community for manifold related
packages in Julia

Currently our main packages are (ordered by age)
Manopt.jl Optimisation on Riemannian manifolds, based on

ManifoldsBase.jl [RB 2022]

Manifolds.jl A library of Riemannian manifolds and Lie groups[Axen, Baran, RB, and Rzecki 2021]

ManifoldsBase.jl A lightweight interface to implement and work on manifolds
ManifoldDiff.jl (automatic) differentiation on Riemannian manifolds and a

function library of differentials, gradients,...
ManifoldDiffEq.jl differential equations on Riemannian manifolds
ManoptExamples.jl A collection of examples and benchmarks for Manopt.jl

2Seth Axen, U Tübingen; Mateusz Baran, AGH Krakow; RB, NTNU
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Summary
▶ constrained optimization turns into unconstraint optimization on a

manifold M
▶ many algorithms can (and have been) generalized to manifolds
▶ Implementations exist in several languages

We considered manifolds and algorithms in Julia

Outlook
▶ manifolds can be defined more general, without an embedding
▶ numerically we embed somewhere to represent points as arrays
▶ Riemannian Hessians
▶ Euclidean AD tools can be used (with some post-processing) to compute

Riemannian gradients and Hessians
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