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Motivation: Constraint vs Unconstraint Optimization
We want to consider a special case of constrained optimisation

min f{x) arg min f(x),
x€S xeS

instead of minimal value f{x*) often minimizer x* of interest
classical: Constrained Optimization. Describe S C R" with constraints
Sz{x‘g( ) <0 and h(x) = 0}, g R" > R™M h: R" — R™

» special algorithms necessary (ALM, EPM)
03 g, h might have complicated gradients or be high-dimensional.

today. If S= M is “nice”, i.e. a Riemannian manifold M:
» different notion of e.g. gradient and “means to move around”

) we obtain unconstrained problems on M

= use gradient descent, CG, quasi Newton, trust region,... on M!



Overview

A few examples

(embedded) Manifolds & Tangent spaces
Retractions (moving around on a manifold)
First order methods (differentials and gradients)
Algorithms & Software

o hwbdb=

Literature.

» Riemannian Manifolds. do Carmo 1992; Lee 2018
» Optimization on Manifolds.
Absil, Mahony, and Sepulchre 2008; Boumal 2023




Example 1: Rayleigh Quotient

Let Ae R™" A= AT, with eigenvalues \; < --- < A\, be given.
We can find an eigenvector v; by

arg min f(x), X) = .
gm f(x) f(x) )
x7#0

» Since AV1 = )\Vl = f(Vl) = )\1
/\ any scaled avy, o # 0 is also a minimizer!

= Newton iteration might even diverge.

Solution. We rephrase the problem to

oA
arg min
xeSn <X7 X>

(A,  STl={xeR"||x =1}

An optimisation problem on the (n — 1)-sphere in R".




Example 2: multiple Eigenvectors & The Stiefel manifold

Goal. Find a orthonormal basis X € R"*P for the space spanned by vi,...,v,
corresponding Ap < --- < Ap.

Then we use columns of X an ONB < XX = I,, the unit matrix [, € RP*P.

We collect all such matrices representing ONBs for any p-dimensional subspace
in

St(n, p) = {X € R™P| X" X = I,},
called the Stiefel manifold.

Our optimization problem to find a best basis reads

arg min f(X), AX) = tr(XTAX)
XeSt(n,p)
p

and at a minimizer X* we have the minimal value {X*) = Z)\,-.
i=1




Example 3: Subspaces & The Grassmann manifold

Observation. The order of basis vectors in the last example is irrelevant.
Even more. iX) = {Y) for X, Y € St(n, p) whenever span(X) = span(Y)

Interpretation. Rotating the basis of the subspace to a new basis of the
subspace still yields the same value
= Let’s built equivalence classes

[X] := {Y € St(n, p) | span(X) = span(Y)}

New Goal. Find the subspace

argmin g([X]),  g([X]) = tr(X"AX)
XI<Gr(n.p)

where
Gr(n,p) == {[X] ‘ X € St(n, p)},

is the Grassmann manifold, i.e. the space of all p-dimensional subspaces of R".




Example 4: DT-MRI & Image Denoising
M — (P3)n><m
An image of
“diffusion tensor pixel”
@ denoising.

e.g. using lp—TV
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Intuition to Tangent space & (sub)manifolds

Intuitive Definition. A (smooth, Riemannian) manifold M is a set that
“locally looks like” RY

= Collecting all derivatives ¢/(0) of curves c: | — M through ¢(0) = p
We obtain a “space of directions”

Example. For the sphere S™! C R” at ¢(0) = p fulfils p'p = ||p||? = 1.
Hence

d(t) e TSP ={XecR"| X p+p X=0}={XcR"| X p=0}
is a (n — 1)-dimensional vector space called the tangent space TPS"*1 at p.

In general. In order to have a manifold, this “looks like” R? always has to be
the same dimension d.




Embedded submanifold & Tangent spaces

Definition (Boumal 2023, Def. 3.10,)
Let £ be a linear space of dimension n. A nonempty subset M of £ is a
(smooth) embedded submanifold of £ of dimension d if either

1. d=nand M isopenin &

2. d=n— kfor some k> 1 and for each p € M there exists a
neighbourhood U C € and h: U — R¥ such that

2.1 If yeU then h(y) =0 ye M
2.2 rank Dh(p) = k

Tangent space. The rank condition ensures that ker Dh(p) is d-dimensional.
This also forms a vector space, the tangent soace T,M at p.

» inherits an inner product by restriction from &, denoted by (-, ),
» the disjoint union of all 7,M is the tangent bundle TM with elements
(p, X).
For S™! even more: we one global h(p) = ||p||*> — 1 with
ker Dh(p) = {X € R"| (X, p) = 0}.




Smooth functions and their Differential
Smooth functions. A function f: M — R is called smooth if it is given
(locally) as the restriction of a function f: =R, ie. f=1,,

The (Euclidean) Differential. Classically (for the embedded f) we have

DAX)[V] = lﬂ)f(x%—tvt)—f(x)

but for fwe have the problem that x+ tv is not necessarily on M!

Idea. use as “directions” in the directional derivative
the curves c: [ — M with ¢: | — M, ¢(0) = p,d(0) = X and define

The Differential of - M — R.

Dfip)[X] = f(C(t))

Fortunately. Both are equivalent, i.e. restricting the Euclidean differential to
TpM yields the Riemannian one: Dfip) = DAp)| ™
p




B Retractions: Moving around on a Manifold.

Iterative Algorithms usually are at some point x, find a (descent) direction v
and a step size s and obtain x(kt1) = x(K 4 sy

How to move on M given some p(¥) and a X € TpM?

Definition (Boumal 2023, Def. 3.47)
A retraction on a manifold M is a smooth map

R: TM — M, (p, X) = Rp(X) e M

such that each curve c(t) = Rp(tX) satisfies ¢(0) = p, ¢(0) = X.

Example 1. on M = S"~1 one can use R,(X) = ﬁ

Example 2. on M = S"! one can use Ry(X) = cos(||X||p)p + sin(||X]|,5) ”))((”p
= we trace great circles (shortest paths)
This retraction has a special name: the exponential map exp, X.




B The Riemannian Gradient

NTNU

Definition (Boumal 2023, Def. 3.58)

Let f: M — R be smooth on a Riemannian manifold M
The Riemannian gradient of fis the vector field grad f on M uniquely defined
by the following identities:

For all (p, X) € TM it holds Df(p)[X] = (X, grad f(p)) .

where Df denotes the differential.
» grad f{p) € T, M is the (tangent) direction of steepest ascent
> for the embedded Riemannian submanifolds: grad f= projr, \(grad fip))
» (like in R":) pis a critical point of f< gradf{p) =0 € T,M.



B Gradient Descent

NTNU Euclidean Gradient Descent. x(*t1) = x(K — o grad fx(K)) for some ay > 0.

Riemannian Gradient Descent.
Use the Riemannian gradient and replace “—".

Input: p© e M
1: k<0
2: while not converged do
3 Pick a step size ay > 0
4: plktl) = Rk (—aks(k)), sk = grad f{[p¥)
5 k—k+1
6: end while
Output: p(V

Stepsize. For example: Armijo line-search along ¢(t) = f(Rp(k)(_tS(k)))



B Stopping Criteria & the Distance on a manifold

NTNU

Variant 1. The inner product (-, ), induces a norm ||-||, on any T,M.

= Given a tolerance £; > 0 stop when ||grad f(p(k))Hp(k) <eq

Variant 2. There is a measure of length for curves c: | — M induced by (-, ).
Introduce a distance daq(p, ) as the length of the shortest curve connecting
both (a shortest geodesic).

= Given a tolerance e, > 0 stop when dy(pt=1, p(¥) < &,

Variant 3. ...as a fallback of course after a maximal number N of iterations.



“Comparing” points and vectors

For Quasi Newton one classically (Euclidean) needs for the secant equation
> (k) — xkt1) _ (k)
> Y = grad (kD)) — grad Ax¥)

Problem 1. We do not have a difference of points.
= Interpret d = z— x is the direction pointing from x to z.

@ We are looking for X such that R,(X) = q or the inverse retraction R,'(q)!
For the special case of R, = exp, the inverse is called logarithmic map log,, -.
Obs! the logarithmic map is often not globally defined.

Problem 2. For two gradients grad f{p) € T, M and grad f{q) € TqM the
difference is not defined, because they live in different spaces

© We need a function Tq«p to “transport” tangent vectors.




Vector Transport

Definition (Absil, Mahony, and Sepulchre 2008, Def. 8.1.1)
Let M be a manifold, and p € M and X € T,M.
Then a vector transport Ty x : TpM — T4 M is a smooth mapping associated
to a retraction with Ry(X) = g such that
1. ToxYe TeM
2. Tpo,Y=Yforall Ye TyM,
3. Tox(aY+BZ2)=aT,xY+ pTpxZforalla,feR, Y, Ze T,M
hold.

Alternative Notation. Tq.p as long as X such that g = Ry(X) is uniquely
defined.

Special case. There exists a vector transport that preserves

norms || Y], = || TpxYllq and angles (Y, Z), = (Tp xY, Tpx2)q.
This vector transport is called parallel transport P, x or Pg.p.




B Quasi Newton — ldea

NTNU For the Hessian of fwe can also start intuitively: How does the gradient grad f
change?

Given a pointp € M and a direction X € T,M we introduce again a curve
c(t) = Ry(tX) to define!

Hess (p)[X] = Lr% Tpec(r) grad f((;(t)) — grad f(p)

Newton equation. We can find a descent direction X € T M by solving

Hess f(p)[X] = — grad f{p¥)

Goal. Approximate Hess f{p) ~ H;: To,M — ToM.

formerly done using a connection ¥ which “describes how the metric changes”
and then define Hess f{p)[X] = Vx grad f(p).



The Riemannian Secant equation

We want to choose H 1 such that it fulfils the secant equation
Hig1[sM] = O or equivalently By 1[y¥] = s

where

> (k) = Ty R‘ plkt1)

k1) ¢ plk

> YK = grad f{p(k*+1) ) — T o grad A plkr)),

Updates similar to the Euclidean case for both H 1 or Bii1

» BFGS [Huang, Absil, and Gallivan 2018]
» DFP

» Broyden [Huang, Gallivan, and Absil 2015]
» limited memory BFGS

» Symmetric Rank 1 (SR1)




Implementing Manifolds & Optimisation — in Julia.

Goals.
» abstract definition of manifolds and properties thereon

e. g. different metrics, retractions, embeddings

implement abstract algorithms for generic manifolds
easy to implement own manifolds & easy to use

well-documented and well-tested

vvyvyl

fast.

Why ¢e Julia?
» high-level language, properly typed
» multiple dispatch (cf. £(x), £(x: :Number), £ (x::Int))
» just-in-time compilation, solves two-language problem

» | like the language — and the community.




Implementing a Riemannian Manifold

ManifoldsBase.jl USES a AbstractManifold{F} with type parameter F € {R,C, H}
to provide an interface for implementing functions like

inner(M, p, X, Y) for the Riemannian metric (X, Y),
exp(M, p, X) and logM, p, q),

more general: retract(M, p, X, m), where m is a retraction method

vVvyyvyy

similarly: parallel_transport(M, p, X, q) and
vector_transport_to(M, p, X, q, m)

for your manifold ¥ a subtype of the AbstractManifold{F}.
© mutating version exp! (M, q, p, X) works in place in q

® basis for generic algorithms working on any Manifold and generic functions
like norm(M,p,X), geodesic(M, p, X) and shortest_geodesic(M, p, q)

& juliamanifolds.github.io/ManifoldsBase.jl /



https://juliamanifolds.github.io/ManifoldsBase.jl/

B Manifolds.jl — A library of manifolds in Julia

Manifolds.jl is build upon ManifoldsBase.jl interface. [Axen, Baran, R, and ISSCig0en

NTNU Features. Manifolds. For example
» different metrics » (unit) Sphere, Circle & Torus
> Lie groups Fixed Rank Matrices

» Build manifolds using
» Product manifold M; x M>
» Power manifold M"*™
» Tangent bundle

(Generalized) Stiefel & Grassmann

Hyperbolic space
Rotations, O(n), SO(n), SU(n)

» Quotient manifolds several further Lie groups
» Embedded manifolds Symmetric positive definite matrices
> perform statistics Symplectic & Symplectic Stiefel
>
formulae and references
> well-tested, >98 % code cov. juliamanifolds.github.io/Manifolds.jl /

| 2
>
| 2
| 2
>
>
| 2
well-documented, including » Kendall's shape space
| 2
&
o)

uliaCon 2020 youtu.be/md-FnDGCh9M


https://juliamanifolds.github.io/Manifolds.jl/
https://youtu.be/md-FnDGCh9M

B Benchmark of log, Hyperbolic space H"

For n = 2,3,22 23 24 25 210 215 220 e compare

Geomstats (Autograd)

AU PPy Geomstats (PyTorch)

(
- - - Geomstats (NumPy)
(
----- Geomstats (TensorFlow)
Geoopt
—— Manopt
TensorFlow RiemOpt

—— Manifolds.jl

10_27 Ll el Ll Ll Ll el Ll
10! 102 103 104 10° 10°

manifold dimension n

® For n > 216: PyTorch & TensorFlow based packages faster.

...we could maybe try using LazyArrays. jl in Julia.




Manopt.jl — A framework

Goal. Provide optimisation algorithms on Riemannian manifolds, /
using ManifoldsBase.jl to work on any manifold from Manifolds.j1.

Generic Framework.

» AbstractManifoldProblem p
contains static information:
M, f, grad f,...

P AbstractManoptSolverState s
specifies a solver, stores
its parameters and values

For your own solver, implement
» initialize_solver!(p, s)
» step_solver!(p, s, i)

To run an algorithm: solve!(p, s)

High level interfaces. E.g.
gradient_descent(M, f, grad_f, pO)

setup problem & state, run the algorithm.

Easy access to
» debug, record & status
P step size algorithms

» (modular) stopping criteria.

Manopt Family.
® .
ee manoptjl.org [RB 2022]
‘ manopt.org [Boumal, Mishra, Absil, and Sepulchre 2014]

e pymanopt.org  [Townsend, Koep, and Weichwald 2016]


https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org

Manopt.jl — Algorithms

Derivative-free
» Nelder-Mead
» Particle Swarm
First order

» Gradient descent:
Alternating, Conjugate Gradient,
Momentum, Nesterov, Stochastic

» Subgradient Method

» Quasi Newton
L-BFGS, BFGS, DFP, Broyden, SR1, ...

» Levenberg Marquardt

Proximal map based
» Cyclic Proximal Point Algorithm
» Douglas-Rachford

7

7

Primal-Dual

» Chambolle-Pock

» Primal-Dual Semismooth Newton
Second order

» Trust Regions with TCG sub-solver
Constrained

» Augmented Lagrangian Method

» Exact Penalty Method

» Frank-Wolfe Method

& manoptjl.org
@ JuliaCon 2022 youtu.be/thbekfsyhCE


https://manoptjl.org
https://youtu.be/thbekfsyhCE

Code Example: Rayleigh Quotient

For the Rayleigh quotient
flp) = p' Ap

on the sphere M = S"! we can easily state the Riemannian gradient can also
be stated direction (or using the projection)

grad (p) = 2(I» — pp")Ap

Let's take a look at the numerics




Outlook: Constrained Optimisation on Manifolds

One can consider problems like
[Liu and Boumal 2019; RB and Herzog 2019]

arg minf{p)
peEM
subject to gi(p) <0, i=1,...,
hj(p)ZO’ .I:]'7' '7p

where gj, hj: M — R describe constraints to p.

= Classical algorithms (ALM, EPM) adapted

falconlightbulb We can choose our own trade-off between geometry and
constraint.




B Software packages — An Overview

We?2 founded the JuliaManifolds, GitHub Community for manifold related
packages in Julia

Currently our main packages are (ordered by age)

Manopt.jl Optimisation on Riemannian manifolds, based on

ManifoldsBase.jl [RB 2022]

Manifolds.jl A library of Riemannian manifolds and Lie groups. .. e and reecki 2001]

ManifoldsBase.jl A lightweight interface to implement and work on manifolds

ManifoldDiff.jI (automatic) differentiation on Riemannian manifolds and a
function library of differentials, gradients,...

ManifoldDiffEq.jl differential equations on Riemannian manifolds

ManoptExamples.jl A collection of examples and benchmarks for Manopt. j1

2Seth Axen, U Tiibingen; Mateusz Baran, AGH Krakow; RB, NTNU



Summary

» constrained optimization turns into unconstraint optimization on a
manifold M

» many algorithms can (and have been) generalized to manifolds
» Implementations exist in several languages

Q We considered manifolds and algorithms in Julia

Outlook
» manifolds can be defined more general, without an embedding
» numerically we embed somewhere to represent points as arrays
» Riemannian Hessians

» Euclidean AD tools can be used (with some post-processing) to compute
Riemannian gradients and Hessians
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