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Manifold-valued Signal & Image Processing

Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

» phase-valued data (S?)

» wind-fields, GPS (S?)

» DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

Artificial noisy phase-valued data.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...




Manifold-valued Signal & Image Processing

Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

» phase-valued data (S?)

» wind-fields, GPS (S?)

» DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

InNSAR-Data of Mt. Vesuvius.

[Rocca, Prati, and Guarnieri 1997]

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...




Manifold-valued Signal & Image Processing

Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

» phase-valued data (S?)

» wind-fields, GPS (S?)

» DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

Artificial noisy data on the sphere S2.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...




Manifold-valued Signal & Image Processing

Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

» phase-valued data (S?)

» wind-fields, GPS (S?)

» DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

Artificial diffusion data,
each pixel is a symmetric positive matrix.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...




Manifold-valued Signal & Image Processing

Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

» phase-valued data (S?)

» wind-fields, GPS (S?)

» DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

DT-MRI of the human brain.

Camino Profject: cmic.cs.ucl.ac.uk/camino

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...



http://cmic.cs.ucl.ac.uk/camino

Manifold-valued Signal & Image Processing

Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

» phase-valued data (S?)

» wind-fields, GPS (S?)

» DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

Grain orientations in EBSD data.
MTEX toolbox: mtex-toolbox.github.io

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...



https://mtex-toolbox.github.io

A Riemannian Manifold M

Notation.

>

vVvyyvyyvyy

A d-dimensional Riemannian manifold can be informally defined as a set M
covered with a ‘suitable’ collection of charts, that identify subsets of M with
open subsets of RY and a continuously varying inner product on the tangent

spaces. [Absil, Mahony, and Sepulchre 2008]

Logarithmic map log, g = 7(0; p, q)
Exponential map exp, X = v, x(1)

Geodesic y(+; p, q)
Tangent space 7TpM
inner product (-, -)p

parallel transport PgpX



The Model

We consider a minimization problem

argencﬂn F(p) + G(A(p))

» M, N are (high-dimensional) Riemannian Manifolds
» F: M — R nonsmooth, (locally, geodesically) convex
» G: N — R nonsmooth, (locally) convex

» A: M — N nonlinear

» C C M strongly geodesically convex.

In image processing.
choose a model, such that finding a minimizer yields the reconstruction




Splitting Methods & Algorithms

On a Riemannian manifold M we have

» Cyclic Proximal Point Algorithm (CPPA) [Bazék 2014]
» (parallel) Douglas—Rachford Algorithm (PDRA) [RB, Persch, and Steidl 2016]
On R"” PDRA is known to be eqUiValent to [Setzer 2011; O'Connor and Vandenberghe 2018]
» Primal-Dual Hybrid Gradient Algorithm (PDHGA) [Esser, Zhang, and Chan 2010]

» Chambolle-Pock Algorithm (CPA)

[Chambolle and Pock 2011; Pock, Cremers, Bischof, and Chambolle 2009]
But on a Riemannian manifold M: /\ no duality theory!
Goals of this talk.

Formulate Duality on a Manifold
Derive a Riemannian Chambolle—Pock Algorithm (RCPA)




The Euclidean Fenchel Conjugate

Let f: R” — R be proper and convex.
We define the Fenchel conjugate f*: R” — R of fby

F&) = sup (&%) = flx) = sup (fl)T (f();))

> interpretation: maximize the distance of £'x to f
= extremum seeking problem on the epigraph
The Fenchel biconjugate reads

FE00 = (F) (%) = sup (€, x) — (&)

€ERN




lllustration of the Fenchel Conjugate

The function f

The Fenchel conjugate f*

1,,

0.5 |

7€)

1




The Riemannian m—Fenchel Conjugate
[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Ndafiez 2021]
alternative approaches: [Ahmadi Kakavandi and Amini 2010; Silva Louzeiro, RB, and Herzog 2022]
Idea: Introduce a point on M to “act as” 0.
Let me C C M be given and F: C — R.
The m-Fenchel conjugate F},: T:M — R is defined by

Fr(&m) = sup {{&m.X) — Flexpy, X)},

XEEC,m
where Lo = {X € TpM | g=exp,, X € C and || X||, = d(q,p)}.

Let m" € C. The mn'-Fenchel-biconjugate Fi* - C — R is given by

F:r;km’(p) = sup {<£m’ ) Iogm’ P> - Prkn(Pmem’Em/)}‘
Em €T M

usually we only use the case m = n'.




Properties of the m-Fenchel Conjugate

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Ndfiez 2021]

» Fr is convex on T M
> F(p) < G(p) forall pe C = Fr,(Em) = Gy(Em) for all Em € ToM

» Fenchel-Moreau theorem: Fo exp,, convex (on T, M), proper, Isc,
then Fir, = Fon C.

» Fenchel-Young inequality: For a proper, convex function Fo exp,,

§P € aMF(p) < F(p) + Frkn(Pm%ng) = <Pm<—p§P ’ IOgm P>~

» For a proper, convex, Isc function Foexp,,

§p € OMmF(p) < log,, p € OFL(Pme pép)-




Proximal Map

For f: M — R and X > 0 we define the Proximal Map as

[Moreau 1965; Rockafellar 1970; Ferreira and Oliveira 2002]
proxy A p) := arg min dpq(u, p)? + A u).
ueM

I' For a minimizer u* of fwe have prox,{u*) = v*.

» For f proper, convex, lsc:

» the proximal map is unique.
» Proximal-Point-Algorithm:
Px = prox, A pk—1) converges to arg min f




B The Chambolle-Pock Algorithm

[Chambolle and Pock 2011]

NTNU From the pair of primal-dual problems

m]iRn fix) + g(Kx), K linear,
xeR"

max — f*(—=K*¢) — g(¢)

£eERM

we obtain for f, g proper convex, Isc the
optimality conditions (OC) for a solution (X, &) as ,
Chambolle-Pock Algorithm. with ¢ > 0, 7 > 0, 8 € R reads

of > —K*¢
og"(£)> Kx
{‘(k-i-l) _ f(k+1) + 9(§(k+1) _ é‘(k))



B The Exact Riemannian Chambolle—Pock Algorithm

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Ndfiez 2021; Chambolle and Pock 2011]

Assume. f(p) = F(p) + G(A(p)), with A: M — N.

NTNU

Input: m, p'% € C c M, n=N\(m), i,(70) € TN, and parameters o, 7, 6 > 0
1. k<0
2 50  pO
3: while not converged do
4

S e proxgg (€1 + 7 ( log,A(B9)))

5: p(k+1) — proxaF<expp(k) (Pp<k)<—m( — JD/\(m)*[ing)])j))

6: f)(k+1) <= eXP (ki) (—(9 |ng(k+1) p(k))
: k< k+1
8: end while
Output: p¥)



B Generalizations & Variants of the RCPA

Classically
[Chambolle and Pock 2011]

» change 0 = oy, T = Tk, 8 = 0 during the iterations
» introduce an acceleration y
» relax dual ¢ instead of primal p (switches lines 4 and 5)

FU rthermOre we [RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Nafiez 2021]

» introduce the IRCPA: linearize A, i.e., adopt the Euclidean case from

[Valkonen 2014]
Iogn A(I_)(k)) - IDn(—/\(m) D/\(m)[logm I_)(k)]

» choose n # A(m) introduces a parallel transport
DA(m) 65 M) = DAY [Py ]

» change m = m(K), n = n(k during the iterations




B ManifoldsBase.jl & Manifolds.jl

ManifoldsBase.jl is an interface Manifolds.jl is a Library of manifolds
for Riemannian manifolds M Circle, (unit) Sphere & Torus

» inner(M, p, X, V) (X, Y), Fixed Rank Matrices

v

> exp(M, p, X) and log(M, p, q), (Symplectic) Stiefel & Grassmann

| 2
| 2
> more general: » Hyperbolic space & Rotations
| 2
| 2

retraCt(Pj{’ P m)_ Symmetric positive definite matrices
where n is a retraction method

. ...and many more
» embeddings as decorator

as well as genericall
© mutating variants, e. g. & y

exp!M, q, p, X)
works in place of q > tangent & vector bundles

» power & product manifold

» Lie groups, connections, metrics, ...

& juliamanifolds.github.io/ManifoldsBase.jl /
& juliamanifolds.github.io/Manifolds.jl / [Axen, Baran, R, and Rzecki 2021]



https://juliamanifolds.github.io/ManifoldsBase.jl/
https://juliamanifolds.github.io/Manifolds.jl/

Manopt.jl: Optimisation on Manifolds in Julia /

Goal. Optimisation algorithms on Riemannian manifolds, based on
ManifoldsBase.jl = works with any manifold from Manifolds.j1.

Features. Algoirthms.
» generic algorithm framework: » Nelder-Mead, Particle Swarm
With Problem p and a SolverState s » Subgradient Method
P> initialize_solver!(p, s) » Gradient Descent

> step_solver!(p, s, i): ith step CG, Stochastic, Momentum, ...
® run algorithm: call solve(p, s)

v

Quasi-Newton
BFGS, DFP, Broyden, SR1, ...

Trust Regions
Chambolle-Pock
Douglas-Rachford, CPPA
ALM, EPM, Frank-Wolfe,...

Difference of Convex
e pymanopt_org [Townsend, Koep, and Weichwald 2016] DCA, DCPPA

» generic debug and recording

» step sizes and stopping criteria.

Manopt Family.

@ .
ee manoptjl.org [RB 2022]
manopt_org [Boumal, Mishra, Absil, and Sepulchre 2014]

vVvyyvyyvyy



https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org

The /2-TV Model

[Rudin, Osher, and Fatemi 1992; Lellmann, Strekalovskiy, Koetter, and Cremers 2013; Weinmann, Demaret, and Storath 2014]

For a manifold-valued image f€ M, M = N'%:% we compute

1
argmin —F(p) + G(A\(p)), a>0,
peEM &
with
> data term F(p) = 1 d%,(p, /)
» “forward differences” A: M — (TM)%—1 =12

- A :(| ire, log, pi )
P (p) (log,, Piter, logp, Piten) i€{1,...,d1—1}x{1,...,do—1}

» prior G(X) = ||X similar to a collaborative TV

p (X) || ||g7q71 [Duran, Moeller, Sbert, and Cremers 2016]

= Pproxyg: given in closed form for g =1 (anisotropic TV) and g =2
(isotropic TV).




B Numerical Example for a P(3)-valued Image

AN

P(3)-valued data.

anisotropic TV, @ = 6.
» in each pixel we have a symmetric positive definite matrix

» Applications: denoising/inpainting e.g. of DT-MRI data




B Numerical Example for a P(3)-valued Image

NTNU

aistrlc TV, o = 6.

3)-valued data.

P(

Appl’oach. CPPA as benchmark [Bagsk 2014; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Nafiez 2021]

CPPA PDRA IRCPA
)\k:% A =0.58 oc=7=0.4
parameters B=093 =02 m=]I
iterations 4000 122 113

runtime 1235s. 380s. 96.1s.




B Numerical Example for a P(3)-valued Image

80 F T T 1 \\\[ T T T T 1 \\\[ T T ; 38‘74 T ]
—— CPPA
g — PDRA
o 601 —IRCPA ||
40 B | | | ]
1 10 100 1,000
Iterations

Appl’oach. CPPA as benchmark [Bagsk 2014; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Nafiez 2021]

CPPA PDRA IRCPA
)\k:2 A =0.58 c=17=0.4
parameters B=093 =02 m=]I
iterations 4000 122 113

runtime 1235s. 380s. 96.1s.




Summary

Summary.
» We introduced a duality framework on manifolds
» we introduced a Riemannian Chambolle—Pock algorithm
» We saw a Software framework for Optimisation algorithms on manifolds
» Numerical examples illustrates its performance

@ Another model works with both functions being geodesmally convex
Silva Louzeiro, RB, and Herzog 2022]

= QOutlook.
» Explore further areas where Duality can be used in non-Euclidean spaces
» Explore further connections between Duality-based algorithms
» look into further applications
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