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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

Artificial noisy phase-valued data.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...
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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

InSAR-Data of Mt. Vesuvius.
[Rocca, Prati, and Guarnieri 1997]

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...
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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

Artificial noisy data on the sphere S2.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...
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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

Artificial diffusion data,
each pixel is a symmetric positive matrix.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...
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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

DT-MRI of the human brain.
Camino Profject: cmic.cs.ucl.ac.uk/camino

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...

http://cmic.cs.ucl.ac.uk/camino
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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

Grain orientations in EBSD data.
MTEX toolbox: mtex-toolbox.github.io

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...

https://mtex-toolbox.github.io
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A Riemannian Manifold M
A d-dimensional Riemannian manifold can be informally defined as a set M
covered with a ‘suitable’ collection of charts, that identify subsets of M with
open subsets of Rd and a continuously varying inner product on the tangent
spaces. [Absil, Mahony, and Sepulchre 2008]

Notation.
▶ Logarithmic map logp q = γ̇(0; p, q)
▶ Exponential map expp X = γp,X(1)
▶ Geodesic γ(·; p , q)
▶ Tangent space TpM
▶ inner product (· , ·)p
▶ parallel transport Pq←pX

γ(·; p , q)p q

expp
logp

X
logp p

TpM

M

Y
Pq←pY
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The Model

We consider a minimization problem

argmin
p∈C

F(p) + G(Λ(p))

▶ M,N are (high-dimensional) Riemannian Manifolds
▶ F :M→ R nonsmooth, (locally, geodesically) convex
▶ G : N → R nonsmooth, (locally) convex
▶ Λ:M→N nonlinear
▶ C ⊂M strongly geodesically convex.

In image processing.
choose a model, such that finding a minimizer yields the reconstruction
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Splitting Methods & Algorithms
On a Riemannian manifold M we have
▶ Cyclic Proximal Point Algorithm (CPPA) [Bačák 2014]

▶ (parallel) Douglas–Rachford Algorithm (PDRA) [RB, Persch, and Steidl 2016]

On Rn PDRA is known to be equivalent to [Setzer 2011; O’Connor and Vandenberghe 2018]

▶ Primal-Dual Hybrid Gradient Algorithm (PDHGA) [Esser, Zhang, and Chan 2010]

▶ Chambolle-Pock Algorithm (CPA)
[Chambolle and Pock 2011; Pock, Cremers, Bischof, and Chambolle 2009]

But on a Riemannian manifold M: no duality theory!

Goals of this talk.
Formulate Duality on a Manifold
Derive a Riemannian Chambolle–Pock Algorithm (RCPA)
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The Euclidean Fenchel Conjugate

Let f : Rn → R be proper and convex.
We define the Fenchel conjugate f ∗ : Rn → R of f by

f ∗(ξ) := sup
x∈Rn
〈ξ, x〉 − f(x) = sup

x∈Rn

(
ξ
−1

)T (
x

f(x)

)

▶ interpretation: maximize the distance of ξTx to f
⇒ extremum seeking problem on the epigraph

The Fenchel biconjugate reads

f ∗ ∗(x) = (f ∗) ∗(x) = sup
ξ∈Rn
〈ξ , x〉 − f ∗(ξ).
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Illustration of the Fenchel Conjugate
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8

The Riemannian m−Fenchel Conjugate
[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

alternative approaches: [Ahmadi Kakavandi and Amini 2010; Silva Louzeiro, RB, and Herzog 2022]

Idea: Introduce a point on M to “act as” 0.

Let m ∈ C ⊂M be given and F : C → R.
The m-Fenchel conjugate F∗m : T ∗mM→ R is defined by

F∗m(ξm) := sup
X∈LC,m

{
〈ξm ,X〉 − F(expm X)

}
,

where LC,m := {X ∈ TmM | q = expm X ∈ C and ‖X‖p = d(q, p)}.

Let m′ ∈ C. The mm′-Fenchel-biconjugate F∗∗mm′ : C → R is given by

F∗∗mm′(p) = sup
ξm′∈T ∗

m′M

{
〈ξm′ , logm′ p〉 − F∗m(Pm←m′ξm′)

}
.

usually we only use the case m = m′.
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Properties of the m-Fenchel Conjugate
[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

▶ F∗m is convex on T ∗mM
▶ F(p) ≤ G(p) for all p ∈ C ⇒ F∗m(ξm) ≥ G∗m(ξm) for all ξm ∈ T ∗mM
▶ Fenchel-Moreau theorem: F ◦ expm convex (on TmM), proper, lsc,

then F∗∗mm = F on C.
▶ Fenchel-Young inequality: For a proper, convex function F ◦ expm

ξp ∈ ∂MF(p)⇔ F(p) + F∗m(Pm←pξp) = 〈Pm←pξp , logm p〉.

▶ For a proper, convex, lsc function F ◦ expm

ξp ∈ ∂MF(p)⇔ logm p ∈ ∂F∗m(Pm←pξp).
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Proximal Map

For f :M→ R and λ > 0 we define the Proximal Map as
[Moreau 1965; Rockafellar 1970; Ferreira and Oliveira 2002]

proxλf(p) := argmin
u∈M

dM(u, p)2 + λf(u).

! For a minimizer u∗ of f we have proxλf(u∗) = u∗.
▶ For f proper, convex, lsc:

▶ the proximal map is unique.
▶ Proximal-Point-Algorithm:

pk = proxλf(pk−1) converges to argmin f
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The Chambolle-Pock Algorithm
[Chambolle and Pock 2011]

From the pair of primal-dual problems

min
x∈Rn

f(x) + g(Kx), K linear,

max
ξ∈Rm

− f ∗(−K∗ξ)− g∗(ξ)

we obtain for f, g proper convex, lsc the
optimality conditions (OC) for a solution (x̂, ξ̂) as ,
Chambolle–Pock Algorithm. with σ > 0, τ > 0, θ ∈ R reads

∂f 3 −K∗ξ̂
∂g∗(ξ̂)3 Kx̂
ξ̄(k+1) = ξ(k+1) + θ(ξ(k+1) − ξ(k))
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The Exact Riemannian Chambolle–Pock Algorithm
[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021; Chambolle and Pock 2011]

Assume. f(p) = F(p) + G(Λ(p)), with Λ:M→N .

Input: m, p(0) ∈ C ⊂M, n = Λ(m), ξ(0)n ∈ T ∗nN , and parameters σ, τ, θ > 0
1: k← 0
2: p̄(0) ← p(0)
3: while not converged do
4: ξ

(k+1)
n ← proxτG∗n

(
ξ
(k)
n + τ

(
lognΛ(p̄(k))

)
♭
)

5: p(k+1) ← proxσF

(
expp(k)

(
Pp(k)←m

(
− σDΛ(m)∗[ξ

(k+1)
n ]

)
♯
))

6: p̄(k+1) ← expp(k+1)
(
−θ logp(k+1) p(k)

)
7: k← k + 1
8: end while

Output: p(k)
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Generalizations & Variants of the RCPA
Classically

[Chambolle and Pock 2011]

▶ change σ = σk, τ = τk, θ = θk during the iterations
▶ introduce an acceleration γ

▶ relax dual ξ̄ instead of primal p̄ (switches lines 4 and 5)
Furthermore we [RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

▶ introduce the lRCPA: linearize Λ, i. e., adopt the Euclidean case from
[Valkonen 2014]

logn Λ(p̄(k)) → Pn←Λ(m)DΛ(m)[logm p̄(k)]
▶ choose n 6= Λ(m) introduces a parallel transport

DΛ(m)∗[ξ
(k+1)
n ] → DΛ(m)∗[PΛ(m)←nξ

(k+1)
n ]

▶ change m = m(k), n = n(k) during the iterations
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ManifoldsBase.jl & Manifolds.jl
ManifoldsBase.jl is an interface
for Riemannian manifolds M

▶ inner(M, p, X, Y) (X , Y)p
▶ exp(M, p, X) and log(M, p, q),
▶ more general:

retract(M, p, X, m),
where m is a retraction method

▶ embeddings as decorator
mutating variants, e. g.
exp!(M, q, p, X)
works in place of q

Manifolds.jl is a Library of manifolds
▶ Circle, (unit) Sphere & Torus
▶ Fixed Rank Matrices
▶ (Symplectic) Stiefel & Grassmann
▶ Hyperbolic space & Rotations
▶ Symmetric positive definite matrices
▶ ...and many more

as well as generically
▶ power & product manifold
▶ tangent & vector bundles
▶ Lie groups, connections, metrics,…

juliamanifolds.github.io/ManifoldsBase.jl/
juliamanifolds.github.io/Manifolds.jl/ [Axen, Baran, RB, and Rzecki 2021]

https://juliamanifolds.github.io/ManifoldsBase.jl/
https://juliamanifolds.github.io/Manifolds.jl/
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Manopt.jl: Optimisation on Manifolds in Julia
Goal. Optimisation algorithms on Riemannian manifolds, based on
ManifoldsBase.jl ⇒ works with any manifold from Manifolds.jl.

Features.
▶ generic algorithm framework:

With Problem p and a SolverState s
▶ initialize_solver!(p, s)
▶ step_solver!(p, s, i): ith step

run algorithm: call solve(p, s)

▶ generic debug and recording
▶ step sizes and stopping criteria.

Manopt Family.
manoptjl.org [RB 2022]

manopt.org [Boumal, Mishra, Absil, and Sepulchre 2014]

pymanopt.org [Townsend, Koep, and Weichwald 2016]

Algoirthms.
▶ Nelder-Mead, Particle Swarm
▶ Subgradient Method
▶ Gradient Descent

CG, Stochastic, Momentum, ...
▶ Quasi-Newton

BFGS, DFP, Broyden, SR1, ...
▶ Trust Regions
▶ Chambolle-Pock
▶ Douglas-Rachford, CPPA
▶ ALM, EPM, Frank-Wolfe,...
▶ Difference of Convex

DCA, DCPPA

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org
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The ℓ2-TV Model
[Rudin, Osher, and Fatemi 1992; Lellmann, Strekalovskiy, Koetter, and Cremers 2013; Weinmann, Demaret, and Storath 2014]

For a manifold-valued image f ∈M, M = N d1,d2 , we compute

argmin
p∈M

1
α

F(p) + G(Λ(p)), α > 0,

with
▶ data term F(p) = 1

2d2
M(p, f)

▶ “forward differences” Λ:M→ (TM)d1−1, d2−1, 2,

p 7→ Λ(p) =
(
(logpi pi+e1 , logpi pi+e2)

)
i∈{1,...,d1−1}×{1,...,d2−1}

▶ prior G(X) = ‖X‖g,q,1 similar to a collaborative TV
[Duran, Moeller, Sbert, and Cremers 2016]

⇒ proxλG∗n
given in closed form for q = 1 (anisotropic TV) and q = 2

(isotropic TV).
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Numerical Example for a P(3)-valued Image

P(3)-valued data. anisotropic TV, α = 6.
▶ in each pixel we have a symmetric positive definite matrix
▶ Applications: denoising/inpainting e.g. of DT-MRI data
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Numerical Example for a P(3)-valued Image

P(3)-valued data. anisotropic TV, α = 6.

Approach. CPPA as benchmark [Bačák 2014; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

CPPA PDRA lRCPA

parameters λk = 4
k λ = 0.58 σ = τ = 0.4

β = 0.93 γ = 0.2, m = I
iterations 4000 122 113
runtime 1235 s. 380 s. 96.1 s.
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Numerical Example for a P(3)-valued Image

1 10 100 1,000
40

60

80

Iterations

Co
st

38.74
CPPA
PDRA
lRCPA

Approach. CPPA as benchmark [Bačák 2014; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

CPPA PDRA lRCPA

parameters λk = 4
k λ = 0.58 σ = τ = 0.4

β = 0.93 γ = 0.2, m = I
iterations 4000 122 113
runtime 1235 s. 380 s. 96.1 s.
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Summary

Summary.
▶ We introduced a duality framework on manifolds
▶ we introduced a Riemannian Chambolle–Pock algorithm
▶ We saw a Software framework for Optimisation algorithms on manifolds
▶ Numerical examples illustrates its performance

Another model works with both functions being geodesically convex
[Silva Louzeiro, RB, and Herzog 2022]

Outlook.
▶ Explore further areas where Duality can be used in non-Euclidean spaces
▶ Explore further connections between Duality-based algorithms
▶ look into further applications
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