

The Difference of Convex Algorithm on Riemannian Manifolds

Ronny Bergmann

joint work with

 $\mbox{O.\,P.}$ Ferreira, E. M. Santos, and J. C. O. Souza.

10th International Congress on Industrial and Applied Mathematics,
Tokyo & online August 24, 2023

Difference of Convex

We aim to solve

$$\arg\min_{p\in\mathcal{M}}f(p)$$

where

- ► M is a Riemannian manifold
- $lackbox{ }f:\mathcal{M}
 ightarrow\mathbb{R}$ is a difference of convex function, i. e. of the form

$$f(p) = g(p) - h(p)$$

 $lackbox{} g,h\colon \mathcal{M} o \overline{\mathbb{R}}$ are convex, lower semicontinuous, and proper

A Riemannian Manifold ${\mathcal M}$

A d-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a "suitable" collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^d and a continuously varying inner product on the tangent spaces.

[Absil, Mahony, and Sepulchre 2008]

A Riemannian Manifold ${\mathcal M}$

Notation.

- ► Logarithmic map $\log_p q = \dot{\gamma}(0; p, q)$
- ightharpoonup Exponential map $\exp_p X = \gamma_{p,X}(1)$
- Geodesic $\gamma(\cdot; p, q)$
- ▶ Tangent space $\mathcal{T}_p\mathcal{M}$
- ▶ inner product $(\cdot, \cdot)_p$

(Geodesic) Convexity

[Sakai 1996; Udriște 1994]

A set $\mathcal{C} \subset \mathcal{M}$ is called (strongly geodesically) convex if for all $p, q \in \mathcal{C}$ the geodesic $\gamma(\cdot; p, q)$ is unique and lies in \mathcal{C} .

A function $F: \mathcal{C} \to \overline{\mathbb{R}}$ is called (geodesically) convex if for all $p, q \in \mathcal{C}$ the composition $F(\gamma(t; p, q)), t \in [0, 1]$, is convex.

The Riemannian Subdifferential

The subdifferential of f at $p \in C$ is given by

[Lee 2003; Udriște 1994]

$$\partial_{\mathcal{M}} \mathit{f}(\mathit{p}) \coloneqq \big\{ \xi \in \mathcal{T}_{\mathit{p}}^* \mathcal{M} \, \big| \, \mathit{f}(\mathit{q}) \ge \mathit{f}(\mathit{p}) + \langle \xi \,, \log_{\mathit{p}} \mathit{q} \rangle_{\mathit{p}} \, \, \, \text{for} \, \mathit{q} \in \mathcal{C} \big\},$$

where

- $ightharpoonup \mathcal{T}_p^*\mathcal{M}$ is the dual space of $\mathcal{T}_p\mathcal{M}$,
- $ightharpoonup \langle \cdot \, , \cdot \rangle_p$ denotes the duality pairing on $\mathcal{T}_p^*\mathcal{M} \times \mathcal{T}_p\mathcal{M}$

The Euclidean DCA

Idea 1. At x_k , approximate h(x) by its affine minorization $h_k(x) := h(x^k) + \langle x - x_k, y_k \rangle$ for some $y_k \in \partial h(x^k)$.

 \Rightarrow iteratively minimize $g(x) - h_k(x) = g(x) + h(x_k) - \langle x - x_k, y_k \rangle$ instead.

Idea 2. Using duality theory finding a new $y_k \in \partial h(x_k)$ is equivalent to

$$y_k \in rg \min_{y \in \mathbb{R}^n} \left\{ h^*(y) - g^*(y_{k-1}) - \langle y - y_{k-1}, x_k
angle
ight\}$$

Idea 3. Formulate the idea using a proximal map \Rightarrow DCPPA

On manifolds: [Almeida, Neto, Oliveira, and J. C. d. O. Souza 2020; J. C. d. O. Souza and Oliveira 2015]

In the Euclidean case, all three models are equivalent.

Derivation of the Riemannian DCA

We consider the linearization of h at some point p_k : With $\xi \in \partial h(p_k)$ we get

$$h_k(p) = h(p_k) + \langle \xi, \log_{p_k} p \rangle_{p_k}$$

Using musical isomorphisms we identify $X = \xi^{\sharp} \in T_p \mathcal{M}$, where we call X a subgradient. Locally h_k minorizes h, i. e.

$$h_k(q) \le h(q)$$
 locally around p_k

 \Rightarrow Use $-h_k(p)$ as upper bound for -h(p) in f.

Note. On \mathbb{R}^n the function h_k is linear.

On a manifold h_k is not necessarily convex, even on a Hadamard manifold.

The Riemannian DC Algorithm

[RB, Ferreira, Santos, and J. C. O. Souza 2023]

Input: An initial point $p^0 \in \text{dom}(g)$, g and $\partial_{\mathcal{M}} h$

- 1: Set k = 0.
- 2: while not converged do
- 3: Take $X_k \in \partial_{\mathcal{M}} h(p_k)$
- 4: Compute the next iterate p^{k+1} as

$$p_{k+1} \in \underset{p \in \mathcal{M}}{\operatorname{arg\,min}} \left(g(p) - \left(X_k, \log_{p_k} p \right)_{p_k} \right).$$
 (*)

- 5: Set $k \leftarrow k + 1$
- 6: end while

Note. In general the subproblem (*) can not be solved in closed form. But an approximate solution yields a good candidate.

Convergence of the Riemannian DCA

[RB, Ferreira, Santos, and J. C. O. Souza 2023]

Let $\{p_k\}_{k\in\mathbb{N}}$ and $\{X_k\}_{k\in\mathbb{N}}$ be the iterates and subgradients of the RDCA.

Theorem.

If \bar{p} is a cluster point of $\{p_k\}_{k\in\mathbb{N}}$, then $\bar{p}\in \text{dom}(g)$ and there exists a cluster point \bar{X} of $\{X_k\}_{k\in\mathbb{N}}$ s. t. $\bar{X}\in\partial g(\bar{p})\cap\partial h(\bar{p})$.

 \Rightarrow Every cluster point of $\{p_k\}_{k\in\mathbb{N}}$, if any, is a critical point of f.

Proposition. Let g be σ -strongly (geodesically) convex. Then

$$f(p_{k+1}) \leq f(p_k) - \frac{\sigma}{2}d^2(p_k, p_{k+1}).$$

and
$$\sum_{k=0}^{\infty} d^2(p_k, p_{k+1}) < \infty$$
, so in particular $\lim_{k \to \infty} d(p_k, p_{k+1}) = 0$.

ManifoldsBase.jl

[Axen, Baran, RB, and Rzecki 2023]

Goal. Provide an interface to implement and use Riemannian manifolds.

Interface AbstractManifold to model manifolds

Functions like exp(M, p, X), log(M, p, X) or retract(M, p, X, method).

Decorators for implicit or explicit specification of an embedding, a metric, or a group,

Efficiency by providing in-place variants like exp(M, q, p, X)

Manifolds.il

Goal. Provide a library of Riemannian manifolds, that is efficiently implemented and well-documented

[Axen, Baran, RB, and Rzecki 2023]

Meta. generic implementations for $\mathcal{M}^{n\times m}$, $\mathcal{M}_1 \times \mathcal{M}_2$, vector- and tangent-bundles, esp. $T_p\mathcal{M}$, or Lie groups

Library. Implemented functions for

- ► Circle, Sphere, Torus, Hyperbolic
- (generalized, symplectic) Stiefel, (generalized) Grassmann, Rotations
- symmetric positive definite matrices
- multinomial, symmetric, symplectic matrices
- ► Tucker & Oblique manifold, Kendall's Shape space

Manopt.jl

Goal. Provide optimization algorithms on Riemannian manifolds.


```
Features. Given a Problem p and a SolverState s, implement initialize_solver!(p, s) and step_solver!(p, s, i) ⇒ an algorithm in the Manopt.jl interface
```

Highlevel interface like gradient_descent(M, f, grad_f) on any manifold M from Manifolds.jl.

Provide debug output, recording, cache & counting capabilities, as well as a library of step sizes and stopping criteria.

Manopt family.

Manopt.jl

Algorithms.

Cost-based Nelder-Mead, Particle Swarm

Subgradient-based Subgradient Method

Gradient-based Gradient Descent, Conjugate Gradient, Stochastic,

Momentum, Nesterov, Averaged, ...

Quasi-Newton: (L-)BFGS, DFP, Broyden, SR1,...

Hessian-based Trust Regions, Adaptive Regularized Cubics (soon)
non-smooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point
constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe
non-convex Difference of Convex Algorithm, DCPPA

Implementation of the DCA

The algorithm is implemented and released in Julia using Manopt.jl¹. It can be used with any manifold from Manifolds.jl

A solver call looks like

```
q = difference_of_convex_algorithm(M, f, g, \partial h, p0) where one has to implement f(M, p), g(M, p), and \partial h(M, p).
```

- a sub problem is automatically generated
- ▶ an efficient version of its cost and gradient is provided
- you can specify the sub-solver to using sub_state= to also set up the specific parameters of your favourite algorithm

¹see https://manoptjl.org/stable/solvers/difference of convex/

Rosenbrock and First Order Methods

Problem. We consider the classical Rosenbrock example²

$$\arg \min_{x \in \mathbb{R}^2} a(x_1^2 - x_2)^2 + (x_1 - b)^2,$$

where a, b > 0, usually b = 1 and $a \gg b$, here: $a = 2 \cdot 10^5$.

Known Minimizer
$$x^* = \begin{pmatrix} b \\ b^2 \end{pmatrix}$$
 with cost $f(x^*) = 0$.

Goal. Compare first-order methods, e.g. using the (Euclidean) gradient

$$\nabla f(x) = \begin{pmatrix} 4a(x_1^2 - x_2) \\ -2a(x_1^2 - x_2) \end{pmatrix} + \begin{pmatrix} 2(x_1 - b) \\ 0 \end{pmatrix}$$

²available online in ManoptExamples.il

A "Rosenbrock-Metric" on \mathbb{R}^2

In our Riemannian framework, we can introduce a new metric on \mathbb{R}^2 as

$$G_{\!
ho} \coloneqq egin{pmatrix} 1 + 4
ho_1^2 & -2
ho_1 \ -2
ho_1 & 1 \end{pmatrix}, ext{ with inverse } G_{\!
ho}^{-1} = egin{pmatrix} 1 & 2
ho_1 \ 2
ho_1 & 1 + 4
ho_1^2 \end{pmatrix}.$$

We obtain $(X, Y)_p = X^T G_p Y$

The exponential and logarithmic map are given as

$$\exp_p(X) = \begin{pmatrix} p_1 + X_1 \\ p_2 + X_2 + X_1^2 \end{pmatrix}, \qquad \log_p(q) = \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 - (q_1 - p_1)^2 \end{pmatrix}.$$

Manifolds.jl:

Implement these functions on $MetricManifold(\mathbb{R}^2)$, RosenbrockMetric()).

The Riemannian Gradient w.r.t. the new Metric

Let $f: \mathcal{M} \to \mathbb{R}$. Given the Euclidean gradient $\nabla f(p)$, its Riemannian gradient grad $f: \mathcal{M} \to T\mathcal{M}$ is given by

$$\operatorname{grad} f(p) = G_p^{-1} \nabla f(p).$$

While we could implement this denoting $abla f(p) = \begin{pmatrix} f_1'(p) & f_2'(p) \end{pmatrix}^{\mathsf{T}}$ using

$$\left\langle \mathsf{grad}\, \mathit{f}(q), \mathsf{log}_q\, \mathit{p} \right\rangle_q = (\mathit{p}_1 - \mathit{q}_1)\mathit{f}_1'(q) + (\mathit{p}_2 - \mathit{q}_2 - (\mathit{p}_1 - \mathit{q}_1)^2)\mathit{f}_2'(q),$$

but it is automatically done in Manopt.jl.

The Experiment Setup

Algorithms. We now compare

- **1.** The Euclidean gradient descent algorithm on \mathbb{R}^2 ,
- 2. The Riemannian gradient descent algorithm on \mathcal{M} ,
- **3.** The Difference of Convex Algorithm on \mathbb{R}^2 ,
- **4.** The Difference of Convex Algorithm on \mathcal{M} .

For DCA third we split f into f(x) = g(x) - h(x) with

$$g(x) = a(x_1^2 - x_2)^2 + 2(x_1 - b)^2$$
 and $h(x) = (x_1 - b)^2$.

Initial point. $p_0 = \frac{1}{10} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ with cost $f(p_0) \approx 7220.81$.

Stopping Criterion. $d_{\mathcal{M}}(p_k, p_{k-1}) < 10^{-16}$ or $\|\text{grad } f(p_k)\|_p < 10^{-16}$.

Algorithm	Runtime	# Iterations
Euclidean GD	305.567 sec.	53 073 227
Euclidean DCA	58.268 sec.	50 588
Riemannian GD	18.894 sec.	2 454 017
Riemannian DCA	7.704 sec.	2 459

Selected References

Almeida, Y. T., J. X. d. C. Neto, P. R. Oliveira, and J. C. d. O. Souza (Feb. 2020). "A modified proximal point method for DC functions on Hadamard manifolds". In: *Computational Optimization and Applications* 76.3, pp. 649–673. DOI: 10.1007/s10589-020-00173-3.

Axen, S. D., M. Baran, RB, and K. Rzecki (2023). "Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds". In: *ACM Transactions on Mathematical Software*. Accepted for pulication. arXiv: 2106.08777.

RB (2022). "Manopt.jl: Optimization on Manifolds in Julia". In: Journal of Open Source Software 7.70, p. 3866. DOI: 10.21105/joss.03866.

RB, O. P. Ferreira, E. M. Santos, and J. C. O. Souza (2023). The difference of convex algorithm on Hadamard manifolds. arXiv: 2112.05250.

Souza, J. C. d. O. and P. R. Oliveira (Feb. 2015). "A proximal point algorithm for DC fuctions on Hadamard manifolds". In: *Journal of Global Optimization* 63.4, pp. 797–810. DOI: 10.1007/s10898-015-0282-7.

