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Difference of Convex

We aim to solve
argmin

p∈M
f(p)

where
▶ M is a Riemannian manifold
▶ f :M→ R is a difference of convex function, i. e. of the form

f(p) = g(p)− h(p)

▶ g, h :M→ R are convex, lower semicontinuous, and proper
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A Riemannian Manifold M

A d-dimensional Riemannian manifold can be informally defined as a
set M covered with a “suitable” collection of charts, that identify subsets
of M with open subsets of Rd and a continuously varying inner product
on the tangent spaces.

[Absil, Mahony, and Sepulchre 2008]
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A Riemannian Manifold M
Notation.
▶ Logarithmic map logp q = γ̇(0; p, q)
▶ Exponential map expp X = γp,X(1)
▶ Geodesic γ(·; p , q)
▶ Tangent space TpM
▶ inner product (· , ·)p

γ(·; p , q)p q

expp
logp

X
logp p

TpM

M
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(Geodesic) Convexity

[Sakai 1996; Udrişte 1994]

A set C ⊂M is called (strongly geodesically) convex
if for all p, q ∈ C the geodesic γ(·; p , q) is unique and lies in C.

A function F : C → R is called (geodesically) convex
if for all p, q ∈ C the composition F(γ(t; p , q)), t ∈ [0, 1], is convex.
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The Riemannian Subdifferential

The subdifferential of f at p ∈ C is given by [Lee 2003; Udrişte 1994]

∂Mf(p) :=
{
ξ ∈ T ∗

pM
∣∣ f(q) ≥ f(p) + ⟨ξ , logp q⟩p for q ∈ C

}
,

where
▶ T ∗

pM is the dual space of TpM,
▶ ⟨· , ·⟩p denotes the duality pairing on T ∗

pM×TpM
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The Euclidean DCA
Idea 1. At xk, approximate h(x) by its affine minorization
hk(x) := h(xk) + ⟨x− xk, yk⟩ for some yk ∈ ∂h(xk).
⇒ iteratively minimize g(x)− hk(x) = g(x) + h(xk)− ⟨x− xk, yk⟩ instead.

Idea 2. Using duality theory finding a new yk ∈ ∂h(xk) is equivalent to

yk ∈ argmin
y∈Rn

{
h∗(y)− g∗(yk−1)− ⟨y− yk−1, xk⟩

}
Idea 3. Formulate the idea using a proximal map ⇒ DCPPA

On manifolds: [Almeida, Neto, Oliveira, and J. C. d. O. Souza 2020; J. C. d. O. Souza and Oliveira 2015]

In the Euclidean case, all three models are equivalent.
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Derivation of the Riemannian DCA
We consider the linearization of h at some point pk:
With ξ ∈ ∂h(pk) we get

hk(p) = h(pk) + ⟨ξ , logpk p⟩pk

Using musical isomorphisms we identify X = ξ♯ ∈ TpM,
where we call X a subgradient. Locally hk minorizes h, i. e.

hk(q) ≤ h(q) locally around pk

⇒ Use −hk(p) as upper bound for −h(p) in f.

Note. On Rn the function hk is linear.
On a manifold hk is not necessarily convex, even on a Hadamard manifold.
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The Riemannian DC Algorithm
[RB, Ferreira, Santos, and J. C. O. Souza 2023]

Input: An initial point p0 ∈ dom(g), g and ∂Mh
1: Set k = 0.
2: while not converged do
3: Take Xk ∈ ∂Mh(pk)
4: Compute the next iterate pk+1 as

pk+1 ∈ argmin
p∈M

(
g(p)−

(
Xk , logpk p

)
pk

)
. (∗)

5: Set k← k + 1
6: end while

Note. In general the subproblem (∗) can not be solved in closed form.
But an approximate solution yields a good candidate.
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Convergence of the Riemannian DCA
[RB, Ferreira, Santos, and J. C. O. Souza 2023]

Let {pk}k∈N and {Xk}k∈N be the iterates and subgradients of the RDCA.
Theorem.
If p̄ is a cluster point of {pk}k∈N, then p̄ ∈ dom(g) and there exists a
cluster point X̄ of {Xk}k∈N s. t. X̄ ∈ ∂g(p̄) ∩ ∂h(p̄).
⇒ Every cluster point of {pk}k∈N, if any, is a critical point of f.

Proposition. Let g be σ-strongly (geodesically) convex. Then

f(pk+1) ≤ f(pk)−
σ

2 d2(pk, pk+1).

and
∞∑

k=0
d2(pk, pk+1) <∞, so in particular lim

k→∞
d(pk, pk+1) = 0.
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ManifoldsBase.jl

[Axen, Baran, RB, and Rzecki 2023]
Goal. Provide an interface to implement and use Riemannian manifolds.

Interface AbstractManifold to model manifolds

Functions like exp(M, p, X), log(M, p, X) or retract(M, p, X, method).

Decorators for implicit or explicit specification of an embedding, a
metric, or a group,

Efficiency by providing in-place variants like exp(M, q, p, X)
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Manifolds.jl

[Axen, Baran, RB, and Rzecki 2023]
Goal. Provide a library of Riemannian manifolds,
that is efficiently implemented and well-documented

Meta. generic implementations for Mn×m, M1 ×M2,
vector- and tangent-bundles, esp. TpM, or Lie groups

Library. Implemented functions for
▶ Circle, Sphere, Torus, Hyperbolic
▶ (generalized, symplectic) Stiefel, (generalized) Grassmann, Rotations
▶ symmetric positive definite matrices
▶ multinomial, symmetric, symplectic matrices
▶ Tucker & Oblique manifold, Kendall’s Shape space
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Manopt.jl
Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s,
implement initialize_solver!(p, s) and step_solver!(p, s, i)
⇒ an algorithm in the Manopt.jl interface

Highlevel interface like gradient_descent(M, f, grad_f)
on any manifold M from Manifolds.jl.
Provide debug output, recording, cache & counting capabilities,
as well as a library of step sizes and stopping criteria.

Manopt family.
manoptjl.org

[RB 2022]
manopt.org

[Boumal, Mishra, Absil, and Sepulchre 2014]
pymanopt.org

[Townsend, Koep, and Weichwald 2016]

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org
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Manopt.jl
Algorithms.
Cost-based Nelder-Mead, Particle Swarm
Subgradient-based Subgradient Method
Gradient-based Gradient Descent, Conjugate Gradient, Stochastic,

Momentum, Nesterov, Averaged, …
Quasi-Newton: (L-)BFGS, DFP, Broyden, SR1,...

Hessian-based Trust Regions, Adaptive Regularized Cubics (soon)
non-smooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point
constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe
non-convex Difference of Convex Algorithm, DCPPA

manoptjl.org

https://www.manoptjl.org
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Implementation of the DCA
The algorithm is implemented and released in Julia using Manopt.jl1.
It can be used with any manifold from Manifolds.jl

A solver call looks like
q = difference_of_convex_algorithm(M, f, g, ∂h, p0)

where one has to implement f(M, p), g(M, p), and ∂h(M, p).

▶ a sub problem is automatically generated
▶ an efficient version of its cost and gradient is provided
▶ you can specify the sub-solver to using sub_state=

to also set up the specific parameters of your favourite algorithm

1see https://manoptjl.org/stable/solvers/difference_of_convex/

https://manoptjl.org/stable/solvers/difference_of_convex/
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Rosenbrock and First Order Methods
Problem. We consider the classical Rosenbrock example2

argmin
x∈R2

a
(
x2

1 − x2
)2

+
(
x1 − b

)2
,

where a, b > 0, usually b = 1 and a≫ b, here: a = 2 · 105.

Known Minimizer x∗ =
(

b
b2

)
with cost f(x∗) = 0.

Goal. Compare first-order methods, e. g. using the (Euclidean) gradient

∇f(x) =
(

4a(x2
1 − x2)

−2a(x2
1 − x2)

)
+

(
2(x1 − b)

0

)

2available online in ManoptExamples.jl

https://juliamanifolds.github.io/ManoptExamples.jl/stable/examples/Difference-of-Convex-Rosenbrock/
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A “Rosenbrock-Metric” on R2

In our Riemannian framework, we can introduce a new metric on R2 as

Gp :=

(
1 + 4p2

1 −2p1
−2p1 1

)
, with inverse G−1

p =

(
1 2p1

2p1 1 + 4p2
1

)
.

We obtain (X , Y)p = XTGpY

The exponential and logarithmic map are given as

expp(X) =
(

p1 + X1
p2 + X2 + X2

1

)
, logp(q) =

(
q1 − p1

q2 − p2 − (q1 − p1)
2

)
.

Manifolds.jl:
Implement these functions on MetricManifold(R^2, RosenbrockMetric()).
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The Riemannian Gradient w.r.t. the new Metric

Let f :M→ R. Given the Euclidean gradient ∇f(p), its Riemannian
gradient grad f :M→ TM is given by

grad f(p) = G−1
p ∇f(p).

While we could implement this denoting ∇f(p) =
(
f ′
1(p) f ′

2(p)
)T using〈

grad f(q), logq p
〉

q
= (p1 − q1)f

′

1(q) + (p2 − q2 − (p1 − q1)
2)f ′

2(q),

but it is automatically done in Manopt.jl.
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The Experiment Setup
Algorithms. We now compare

1. The Euclidean gradient descent algorithm on R2,
2. The Riemannian gradient descent algorithm on M,
3. The Difference of Convex Algorithm on R2,
4. The Difference of Convex Algorithm on M.

For DCA third we split f into f(x) = g(x)− h(x) with

g(x) = a
(
x2

1 − x2
)2

+ 2
(
x1 − b

)2 and h(x) =
(
x1 − b

)2
.

Initial point. p0 = 1
10

(
1
2

)
with cost f(p0) ≈ 7220.81.

Stopping Criterion. dM(pk, pk−1) < 10−16 or ∥grad f(pk)∥p < 10−16.
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The Results

100 101 102 103 104 105 106 107
10−16

10−10

10−4

102

Iter. k

f(pk)
Euclidean GD Euclidan DCA

Riemannian GD Riemannian DCA

Algorithm Runtime # Iterations
Euclidean GD 305.567 sec. 53 073 227
Euclidean DCA 58.268 sec. 50 588
Riemannian GD 18.894 sec. 2 454 017
Riemannian DCA 7.704 sec. 2 459
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