Nonsmooth, nonconvex Optimization on Riemannian Manifolds

Ronny Bergmann

Workshop
From Modeling and Analysis to Approximation and Fast Algorithms,
Hasenwinkel,

NTNU

Motivation

The Rayleigh Quotient

When minimizing the Rayleigh quotient for a symmetric $A \in \mathbb{R}^{n \times n}$

$$
\underset{x \in \mathbb{R}^{n} \backslash\{0\}}{\arg \min } \frac{x^{\top} A x}{\|x\|^{2}}
$$

© Any eigenvector x^{*} to the smallest $\mathrm{EV} \lambda$ is a minimizer no isolated minima and Newton's method diverges
Q Constrain the problem to unit vectors $\|x\|=1$!
classic constrained optimization (ALM, EPM,...)
Today Utilize the geometry of the sphere
A unconstrained optimization $\quad \arg \min p^{\top} A p$

$$
p \in \mathbb{S}^{n-1}
$$

:三 adapt unconstrained optimization to Riemannian manifolds.

The Generalized Rayleigh Quotient

More general. Find a basis for the space of eigenvectors to $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{k}:$

$$
\underset{X \in \operatorname{St}(n, k)}{\arg \min } \operatorname{tr}\left(X^{\top} A X\right), \quad \operatorname{St}(n, k):=\left\{X \in \mathbb{R}^{n \times k} \mid X^{\top} X=I\right\}
$$

Δ
a problem on the Stiefel manifold $\operatorname{St}(n, k)$
© Invariant under rotations within a k-dim subspace.
? Find the best subspace!

$$
\underset{\operatorname{span}(X) \in \operatorname{Gr}(n, k)}{\arg \min } \operatorname{tr}\left(X^{\top} A X\right), \quad \operatorname{Gr}(n, k):=\{\operatorname{span}(X) \mid X \in \operatorname{St}(n, k)\}
$$a problem on the Grassmann manifold $\operatorname{Gr}(n, k)=\operatorname{St}(n, k) / O(k)$.

Optimization on Riemannian Manifolds

We are looking for numerical algorithms to find

$$
\underset{n \in \mathcal{M}}{\arg \min } f(p)
$$

where

- \mathcal{M} is a Riemannian manifold
- $f: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ is a function
© f might be nonsmooth and/or nonconvex
© \mathcal{M} might be high-dimensional

A Riemannian Manifold \mathcal{M}

> A d-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a "suitable" collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^{d} and a continuously varying inner product on the tangent spaces.

A Riemannian Manifold \mathcal{M}
Notation.

- Logarithmic map $\log _{p} q=\dot{\gamma}(0 ; p, q)$
- Exponential map $\exp _{p} X=\gamma_{p, x}(1)$
- Geodesic $\gamma(\cdot ; p, q)$
- Tangent space $\mathcal{T}_{p} \mathcal{M}$
- inner product $(\cdot, \cdot)_{p}$

(Geodesic) Convexity

A set $\mathcal{C} \subset \mathcal{M}$ is called (strongly geodesically) convex if for all $p, \boldsymbol{q} \in \mathcal{C}$ the geodesic $\gamma(\cdot ; p, q)$ is unique and lies in \mathcal{C}.

A function $F: \mathcal{C} \rightarrow \overline{\mathbb{R}}$ is called (geodesically) convex if for all $p, q \in \mathcal{C}$ the composition $F(\gamma(t ; p, q)), t \in[0,1]$, is convex.

The Riemannian Subdifferential

The subdifferential of f at $p \in \mathcal{C}$ is given by

$$
\partial_{\mathcal{M}} f(p):=\left\{\xi \in \mathcal{T}_{p}^{*} \mathcal{M} \mid f(q) \geq f(p)+\left\langle\xi, \log _{p} q\right\rangle_{p} \text { for } q \in \mathcal{C}\right\}
$$

where

- $\mathcal{T}_{p}{ }^{*} \mathcal{M}$ is the dual space of $\mathcal{T}_{p} \mathcal{M}$,
- $\langle\cdot, \cdot\rangle_{p}$ denotes the duality pairing on $\mathcal{T}_{p}^{*} \mathcal{M} \times \mathcal{T}_{p} \mathcal{M}$

Musical Isomorphisms

Using the tangent space $\mathcal{T}_{p} \mathcal{M}$ and its dual $\mathcal{T}_{p}^{*} \mathcal{M}$, the inner product $(\cdot, \cdot)_{p}$ and the duality pairing $\langle\cdot, \cdot\rangle$,
the musical isomorphisms are

$$
b: \mathcal{T}_{p} \mathcal{M} \rightarrow \mathcal{T}_{p}^{*} \mathcal{M} \quad \text { and } \quad \sharp: \mathcal{T}_{p}^{*} \mathcal{M} \rightarrow \mathcal{T}_{p} \mathcal{M}
$$

such that for any $X, Y \in \mathcal{T}_{p} \mathcal{M}$ and $\xi \in \mathcal{T}_{p}^{*} \mathcal{M}$ we have

$$
\left\langle X^{\dagger}, Y\right\rangle=(X, Y)_{p} \quad \text { and } \quad\left(\xi^{\sharp}, Y\right)_{p}=\langle\xi, Y\rangle
$$

The Proximal Map

For a function $f: \mathcal{M} \rightarrow \mathbb{R}$ and a $\lambda>0$ we define the proximal map as
[Moreau 1965; Rockafellar 1970; O. Ferreira and Oliveira 2002]

$$
\operatorname{prox}_{\lambda f}(p):=\underset{q \in \mathcal{M}}{\arg \min } d_{\mathcal{M}}(q, p)^{2}+\lambda f(q) .
$$

Properties.

- Minimizer p^{*} of $f \Leftrightarrow$ fix point of the $\operatorname{prox}^{\operatorname{prox}}{ }_{\lambda f}\left(p^{*}\right)=p^{*}$
- If f is proper, convex, Isc.: arg min unique.
- proximal point algorithm (PPA): $p^{(k+1)}=\operatorname{prox}_{\lambda f}\left(p^{(k)}\right)$ converges to p^{*}

Splitting Methods \& Algorithms

For $\arg \min f(p)+g(p)$ we can use $p \in \mathcal{M}$

- Cyclic Proximal Point Algorithm (CPPA)
- (parallel) Douglas-Rachford Algorithm (PDRA)
which are for $\mathcal{M}=\mathbb{R}^{n}$ also equivalend to
- Primal-Dual Hybrid Gradient Algorithm (PDHGA) [Esser, Zhang, and Chan 2010]
- Chambolle-Pock Algorithm (CPA)
[Chambolle and Pock 2011; Pock, Cremers, Bischof, and Chambolle 2009]

Challenge.

These rely on the dual space of \mathbb{R}^{n}, which \mathcal{M} does not have.
More precisely. They employ the Fenchel conjugate.

The Fenchel Conjugate

The Fenchel conjugate of a function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is given by

$$
f^{*}(\xi):=\sup _{x \in \mathbb{R}^{n}}\langle\xi, x\rangle-f(x)=\sup _{x \in \mathbb{R}^{n}}\binom{\xi}{-1}^{\top}\binom{x}{f(x)}
$$

- given $\xi \in \mathbb{R}^{n}$: maximize the distance between ξ^{\top}. and f
- can also be written in the epigraph

The Fenchel biconjugate reads

$$
f^{* *}(x)=\left(f^{*}\right)^{*}(x)=\sup _{\xi \in \mathbb{R}^{n}}\langle\xi, x\rangle-f^{*}(\xi)
$$

D

The function f

The Fenchel conjugate f^{*}

Properties of the Fenchel Conjugate

- The Fenchel conjugate f^{*} is convex (even if f is not)
- $f^{* *}$ is the largest convex, Isc function with $f^{* *} \leq f$
- If $f(x) \leq g(x)$ for all $x \in \mathbb{R}^{n} \Rightarrow f^{*}(\xi) \geq g^{*}(\xi)$ for all $\xi \in \mathbb{R}^{n}$
- Fenchel-Moreau Theorem. f convex, proper, Isc $\Rightarrow f^{* *}=f$.
- Fenchel-Young inequality.

$$
f(x)+f^{*}(\xi) \geq \xi^{\top} x \quad \text { for all } \quad x, \xi \in \mathbb{R}^{n}
$$

- For a proper, convex function f

$$
\xi \in \partial f(x) \Leftrightarrow f(x)+f^{*}(\xi)=\xi^{\top} x
$$

- For a proper, convex, Isc function f, then

$$
\xi \in \partial f(x) \Leftrightarrow x \in \partial f^{*}(\xi)
$$

The (Riemannian) m-Fenchel Conjugate

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]
Idea. Localize to $\mathcal{C} \subset \mathcal{M}$ around a point m which "acts as" 0 .
The m-Fenchel conjugate of a function $f: \mathcal{C} \rightarrow \overline{\mathbb{R}}$ is given by

$$
f_{m}^{*}\left(\xi_{m}\right):=\sup _{X \in \mathcal{L}_{\mathcal{C}, m}}\left\{\left\langle\xi_{m}, X\right\rangle-f\left(\exp _{m} X\right)\right\}
$$

where $\mathcal{L}_{\mathcal{C}, m}:=\left\{X \in \mathcal{T}_{m} \mathcal{M} \mid q=\exp _{m} X \in \mathcal{C}\right.$ and $\left.\|X\|_{p}=d(q, p)\right\}$.

Let $m^{\prime} \in \mathcal{C}$. The $m m^{\prime}$-Fenchel-biconjugate $F_{m m^{\prime}}^{* *}: \mathcal{C} \rightarrow \overline{\mathbb{R}}$ is given by

$$
F_{m m^{\prime}}^{* *}(p)=\sup _{\xi_{m^{\prime}} \in \mathcal{T}_{m^{\prime}, \mathcal{M}}^{*}}\left\{\left\langle\xi_{m^{\prime}}, \log _{m^{\prime}} p\right\rangle-F_{m}^{*}\left(\mathrm{P}_{m \leftarrow m^{\prime}} \xi_{m^{\prime}}\right)\right\}
$$

where usually we only use the case $m=m^{\prime}$.

Properties of the m-Fenchel Conjugate

- f_{m}^{*} is convex on $\mathcal{T}_{m}^{*} \mathcal{M}$
- If $f(p) \leq g(p)$ for all $p \in \mathcal{C} \Rightarrow f_{m}^{*}\left(\xi_{m}\right) \geq g_{m}^{*}\left(\xi_{m}\right)$ for all $\xi_{m} \in \mathcal{T}_{m}^{*} \mathcal{M}$
- Fenchel-Moreau Theorem $f \circ \exp _{m}$ convex (on $\mathcal{T}_{m} \mathcal{M}$), proper, Isc, $\Rightarrow f_{m m}^{* *}=f$ on \mathcal{C}.
- Fenchel-Young inequality: For a proper, convex function $f \circ \exp _{m}$

$$
\xi_{p} \in \partial_{\mathcal{M}} f(p) \Leftrightarrow f(p)+f_{m}^{*}\left(\mathrm{P}_{m \leftarrow p} \xi_{p}\right)=\left\langle\mathrm{P}_{m \leftarrow p} \xi_{p}, \log _{m} p\right\rangle
$$

- For a proper, convex, Isc function $f \circ \exp _{m}$

$$
\xi_{p} \in \partial_{\mathcal{M}} f(p) \Leftrightarrow \log _{m} p \in \partial f_{m}^{*}\left(\mathrm{P}_{m \leftarrow p} \xi_{p}\right)
$$

The Chambolle-Pock Algorithm

From the pair of primal-dual problems

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x)+g(K x), \quad K \text { linear, } \\
& \max _{\xi \in \mathbb{R}^{m}}-f^{*}\left(-K^{*} \xi\right)-g^{*}(\xi)
\end{aligned}
$$

we obtain for f, g proper convex, Isc the optimality conditions of a solution $(\hat{x}, \hat{\xi})$ as

$$
\begin{aligned}
-K^{*} \hat{\xi} & \in \partial f(\hat{x}) \\
K \hat{x} & \in \partial g^{*}(\hat{\xi})
\end{aligned}
$$

The Chambolle-Pock Algorithm

From the pair of primal-dual problems

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x)+g(K x), \quad K \text { linear, } \\
& \max _{\xi \in \mathbb{R}^{m}}-f^{*}\left(-K^{*} \xi\right)-g^{*}(\xi)
\end{aligned}
$$

we obtain for f, g proper convex, Isc the
Chambolle-Pock Algorithm. with $\sigma>0, \tau>0, \theta \in \mathbb{R}$ reads

$$
\begin{aligned}
x^{(k+1)} & =\operatorname{prox}_{\sigma f}\left(x^{(k)}-\sigma K^{*} \bar{\xi}^{(k)}\right) \\
\xi^{(k+1)} & =\operatorname{prox}_{\tau g, *}\left(\xi^{(k)}+\tau K x^{(k+1)}\right) \\
\bar{\xi}^{(k+1)} & =\xi^{(k+1)}+\theta\left(\xi^{(k+1)}-\xi^{(k)}\right)
\end{aligned}
$$

Saddle Point Formulation on Manifolds

On manifolds, we consider for

$$
\min _{p \in \mathcal{M}} f(p)+g(\wedge p), \quad \Lambda: \mathcal{M} \rightarrow \mathcal{N}
$$

where f is geodesically convex, and $g \circ \exp _{n}$ is convex for some $n \in \mathcal{N}$.

Saddle point formulation. Using the n-Fenchel conjugate g_{n}^{*} of g :

$$
\min _{p \in \mathcal{C}} \max _{\xi_{n} \in \mathcal{T}_{n}^{*} \mathcal{N}}\left\langle\xi_{n}, \log _{n} \Lambda(p)\right\rangle+f(p)-g_{n}^{*}\left(\xi_{n}\right)
$$

But. Λ is inherently nonlinear and inside a logarithmic map \Rightarrow no adjoint.

Approach. Linearization: Choose m such that $n=\Lambda(m)$ and

$$
\Lambda(p) \approx \exp _{\Lambda(m)} D \Lambda(m)\left[\log _{m} p\right]
$$

The exact Riemannian Chambolle-Pock Algorithm

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021; Chambolle and Pock 2011]
Input: $m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n=\Lambda(m), \xi_{n}^{(0)} \in \mathcal{T}_{n}^{*} \mathcal{N}$, and $\sigma, \tau, \theta>0$
1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\quad \xi_{n}^{(k+1)} \leftarrow \operatorname{prox}_{\tau g_{n}^{*}}\left(\xi_{n}^{(k)}+\tau\left(\log _{n} \Lambda\left(\bar{p}^{(k)}\right)\right)^{b}\right)$
5: $\quad p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma f}\left(\exp _{p^{(k)}}\left(\mathrm{P}_{p^{(k)} \leftarrow m}\left(-\sigma D \Lambda(m)^{*}\left[\xi_{n}^{(k+1)}\right]\right)^{\sharp}\right)\right)$
6: $\quad \bar{p}^{(k+1)} \leftarrow \exp _{p^{(k+1)}}\left(-\theta \log _{p^{(k+1)}} p^{(k)}\right)$
7: $\quad k \leftarrow k+1$
8: end while
Output: $p^{(k)}$

Difference of Convex

Difference of Convex

We aim to solve

$$
\underset{p \in \mathcal{M}}{\arg \min } f(p)
$$

where

- \mathcal{M} is a Riemannian manifold
- $f: \mathcal{M} \rightarrow \mathbb{R}$ is a difference of convex function, i. e. of the form

$$
f(p)=g(p)-h(p)
$$

- $g, h: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ are convex, lower semicontinuous, and proper

The Euclidean DCA

Idea 1. At x_{k}, approximate $h(x)$ by its affine minorization
$h_{k}(x):=h\left(x^{(k)}\right)+\left\langle x-x^{(k)}, y^{(k)}\right\rangle$ for some $y^{(k)} \in \partial h\left(x^{k}\right)$.
\Rightarrow minimize $g(x)-h_{k}(x)=g(x)+h\left(x^{(k)}\right)-\left\langle x-x^{(k)}, y^{(k)}\right\rangle$ instead.
Idea 2. Using duality theory finding a new $y^{(k)} \in \partial h\left(x^{(k)}\right)$ is equivalent to

$$
y^{(k)} \in \underset{y \in \mathbb{R}^{n}}{\arg \min }\left\{h^{*}(y)-g^{*}\left(y^{(k-1)}\right)-\left\langle y-y^{(k-1)}, x^{(k)}\right\rangle\right\}
$$

Idea 3. Reformulate 2 using a proximal map \Rightarrow DCPPA
On manifolds:

In the Euclidean case, all three models are equivalent.

A Fenchel Duality on a Hadamard Manifold

Definition

Let $f: \mathcal{M} \rightarrow \overline{\mathbb{R}}$. The Fenchel conjugate of f is the function $f^{*}: \mathcal{T}^{*} \mathcal{M} \rightarrow \overline{\mathbb{R}}$ defined by

$$
f^{*}(p, \xi):=\sup _{q \in \mathcal{M}}\left\{\left\langle\xi, \log _{p} q\right\rangle-f(q)\right\}, \quad(p, \xi) \in \mathcal{T}^{*} \mathcal{M}
$$

The Dual Difference of Convex Problem

Given the Difference of Convex problem

$$
\underset{p \in \mathcal{M}}{\arg \min } g(p)-h(p)
$$

and the Fenchel duals g^{*} and h^{*} we can state the dual difference of convex problem as
[RB, O. P. Ferreira, Santos, and Souza 2023]

$$
\underset{(p, \xi) \in T^{*} \mathcal{M}}{\arg \min } h^{*}(p, \xi)-g^{*}(p, \xi) .
$$

On $\mathcal{M}=\mathbb{R}^{n}$ this indeed simplifies to the classical dual problem.

Theorem.

$$
\inf _{(q, X) \in \mathcal{T}^{*} \mathcal{M}}\left\{h^{*}(q, X)-g^{*}(q, X)\right\}=\inf _{p \in \mathcal{M}}\{g(p)-h(p)\}
$$

The Dual Difference of Convex Problem

The primal and dual Difference of convex problem

$$
\underset{p \in \mathcal{M}}{\arg \min } g(p)-h(p) \quad \text { and } \quad \underset{(p, \xi) \in T^{*} \mathcal{M}}{\arg \min } h^{*}(p, \xi)-g^{*}(p, \xi)
$$

are equivalent in the following sense.

Theorem.

If p^{*} is a solution of the primal problem, then $\left(p^{*}, \xi^{*}\right) \in T^{*} \mathcal{M}$ is a solution for the dual problem for all $\xi^{*} \in \partial_{\mathcal{M}} h\left(p^{*}\right) \cap \partial_{\mathcal{M}} g\left(p^{*}\right)$.

If $\left(p^{*}, \xi^{*}\right) \in T^{*} \mathcal{M}$ is a solution of the dual problem for some $\xi^{*} \in \partial_{\mathcal{M}} h\left(p^{*}\right) \cap \partial_{\mathcal{M}} g\left(p^{*}\right)$, then p^{*} is a solution of the primal problem.

Derivation of the Riemannian DCA

We consider the linearization of h at some point $p^{(k)}$: With $\xi \in \partial h\left(p^{(k)}\right)$ we get

$$
h_{k}(p)=h\left(p^{(k)}\right)+\left\langle\xi, \log _{p^{(k)}} p\right\rangle_{p^{(k)}}
$$

Using musical isomorphisms we identify $X=\xi^{\sharp} \in T_{p} \mathcal{M}$, where we call X a subgradient. Locally h_{k} minorizes h, i. e.

$$
h_{k}(q) \leq h(q) \text { locally around } p^{(k)}
$$

\Rightarrow Use $-h_{k}(p)$ as upper bound for $-h(p)$ in f.
Note. On \mathbb{R}^{n} the function h_{k} is linear. On a manifold h_{k} is not necessarily convex, even on a Hadamard manifold.

The Riemannian DC Algorithm

Input: An initial point $p^{0} \in \operatorname{dom}(g), g$ and $\partial_{\mathcal{M}} h$
1: Set $k=0$.
2: while not converged do
3: \quad Take $X^{(k)} \in \partial_{\mathcal{M}} h\left(p^{(k)}\right)$
4: \quad Compute the next iterate p^{k+1} as

$$
\begin{equation*}
p^{(k+1)} \in \underset{p \in \mathcal{M}}{\arg \min } g(p)-\left(X_{k}, \log _{p^{(k)}} p\right)_{p^{(k)}} \tag{*}
\end{equation*}
$$

5: \quad Set $k \leftarrow k+1$
6: end while

Note. In general the subproblem $(*)$ can not be solved in closed form. But an approximate solution yields a good candidate.

Convergence of the Riemannian DCA

Let $\left\{p^{(k)}\right\}_{k \in \mathbb{N}}$ and $\left\{X^{(k)}\right\}_{k \in \mathbb{N}}$ be the iterates and subgradients of the RDCA.

Theorem.

If \bar{p} is a cluster point of $\left\{p^{(k)}\right\}_{k \in \mathbb{N}}$, then $\bar{p} \in \operatorname{dom}(g)$ and there exists a cluster point \bar{X} of $\left\{X^{(k)}\right\}_{k \in \mathbb{N}}$ s.t. $\bar{X} \in \partial g(\bar{p}) \cap \partial h(\bar{p})$.
\Rightarrow Every cluster point of $\left\{p^{(k)}\right\}_{k \in \mathbb{N}}$, if any, is a critical point of f.

Proposition. Let g be σ-strongly (geodesically) convex. Then

$$
f\left(p_{k+1}\right) \leq f\left(p^{(k)}\right)-\frac{\sigma}{2} d^{2}\left(p^{(k)}, p_{k+1}\right)
$$

$$
\text { and } \sum_{k=0}^{\infty} d^{2}\left(p^{(k)}, p_{k+1}\right)<\infty, \text { so in particular } \lim _{k \rightarrow \infty} d\left(p^{(k)}, p_{k+1}\right)=0
$$

NTNU

Software

ManifoldsBase.j|

Goal. Provide an interface to implement and use Riemannian manifolds.

Interface AbstractManifold to model manifolds

Functions like $\exp (M, p, X), \log (M, p, X)$ or retract $(M, p, X$, method $)$.

Decorators for implicit or explicit specification of an embedding, a metric, or a group,

Efficiency by providing in-place variants like \exp ! (M, q, p, X)

Manifolds.jl

Goal. Provide a library of Riemannian manifolds, that is efficiently implemented and well-documented

Meta. generic implementations for $\mathcal{M}^{n \times m}, \mathcal{M}_{1} \times \mathcal{M}_{2}$, vector- and tangent-bundles, esp. $T_{p} \mathcal{M}$, or Lie groups

Library. Implemented functions for

- Circle, Sphere, Torus, Hyperbolic, Projective Spaces
- (generalized, symplectic) Stiefel, (generalized) Grassmann, Rotations
- Symmetric Positive Definite matrices
- Multinomial, Symmetric, Symplectic matrices
- Tucker \& Oblique manifold, Kendall's Shape space
- ...

Manopt.j

Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s, implement initialize_solver!(p, s) and step_solver!(p, s, i) \Rightarrow an algorithm in the Manopt.jl interface

Highlevel interface like gradient_descent(M, f, grad_f) on any manifold M from Manifolds.jl.

Provide debug output, recording, cache \& counting capabilities, as well as a library of step sizes and stopping criteria.

Manopt family.

[Boumal, Mishra, Absil, and Sepulchre 2014]

Manopt.j

Algorithms.

Cost-based Nelder-Mead, Particle Swarm
Subgradient-based Subgradient Method
Gradient-based Gradient Descent, Conjugate Gradient, Stochastic, Momentum, Nesterov, Averaged, ... Quasi-Newton: (L-)BFGS, DFP, Broyden, SR1,...
Hessian-based Trust Regions, Adaptive Regularized Cubics (soon) nonsmooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe nonconvex Difference of Convex Algorithm, DCPPA
manoptjl.org

Implementation of the DCA

The algorithm is implemented and released in Julia using Manopt. $\mathrm{j} 1^{1}$. It can be used with any manifold from Manifolds.j1

A solver call looks like

$$
q=\text { difference_of_convex_algorithm }(M, f, g, \partial h, p 0)
$$

where one has to implement $f(M, p), g(M, p)$, and $\partial h(M, p)$.

- a sub problem is automatically generated
- an efficient version of its cost and gradient is provided
- you can specify the sub-solver to using sub_state= to also set up the specific parameters of your favourite algorithm

[^0]
The ℓ^{2}-TV Model

[Rudin, Osher, and Fatemi 1992; Lellmann, Strekalovskiy, Koetter, and Cremers 2013; Weinmann, Demaret, and Storath 2014] For a manifold-valued image $q \in \mathcal{M}, \mathcal{M}=\mathcal{N}^{d_{1}, d_{2}}$, we compute

$$
\underset{p \in \mathcal{M}}{\arg \min } \frac{1}{2 \alpha} d_{\mathcal{M}}^{2}(p, q)+\|\Lambda(p)\|_{g, s, 1}
$$

with

- "forward differences" $\wedge: \mathcal{M} \rightarrow(T \mathcal{M})^{d_{1}-1, d_{2}-1,2}$,

$$
p \mapsto \Lambda(p)=\left(\left(\log _{p_{i}} p_{i+e_{1}}, \log _{p_{i}} p_{i+e_{2}}\right)\right)_{i \in\left\{1, \ldots, d_{1}-1\right\} \times\left\{1, \ldots, d_{2}-1\right\}}
$$

- $\|X\|_{g, s, 1}$ similar to a collaborative TV,
\Rightarrow anisotropic TV $(s=1)$ and isotropic TV $(s=2)$

Numerical Example for a $\mathcal{P}(3)$-valued Image

$\mathcal{P}(3)$-valued data.

anisotropic TV, $\alpha=6$.

- in each pixel we have a symmetric positive definite matrix
- Applications: denoising/inpainting e.g. of DT-MRI data

Numerical Example for a $\mathcal{P}(3)$-valued Image

Approach. CPPA as benchmark
[Bačák 2014; RB, Persch, and Steidl 2016; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

	CPPA	PDRA	IRCPA
parameters	$\lambda_{k}=\frac{4}{k}$	$\lambda=0.58$	$\sigma=\tau=0.4$
iterations	4000	122	$\gamma=0.2, m=I$
runtime	1235 s.	380 s.	$\mathbf{1 1 3}$

Numerical Example for a $\mathcal{P}(3)$-valued Image

Approach. CPPA as benchmark
[Bačák 2014; RB, Persch, and Steidl 2016; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]
CPPA PDRA IRCPA

parameters	$\lambda_{k}=\frac{4}{k}$	$\lambda=0.58$	$\sigma=\tau=0.4$
iterations	4000	122	$\gamma=0.2, m=1$
runtime	1235 s.	380 s.	$\mathbf{1 1 3}$

Rosenbrock and First Order Methods

Problem. We consider the classical Rosenbrock example ${ }^{2}$

$$
\underset{x \in \mathbb{R}^{2}}{\arg \min } a\left(x_{1}^{2}-x_{2}\right)^{2}+\left(x_{1}-b\right)^{2}
$$

where $a, b>0$, usually $b=1$ and $a \gg b$, here: $a=2 \cdot 10^{5}$.
Known Minimizer $x^{*}=\binom{b}{b^{2}}$ with cost $f\left(x^{*}\right)=0$.
Goal. Compare first-order methods, e. g. using the (Euclidean) gradient

$$
\nabla f(x)=\binom{4 a\left(x_{1}^{2}-x_{2}\right)}{-2 a\left(x_{1}^{2}-x_{2}\right)}+\binom{2\left(x_{1}-b\right)}{0}
$$

[^1]
A "Rosenbrock-Metric" on \mathbb{R}^{2}

In our Riemannian framework, we can introduce a new metric on \mathbb{R}^{2} as

$$
G_{p}:=\left(\begin{array}{cc}
1+4 p_{1}^{2} & -2 p_{1} \\
-2 p_{1} & 1
\end{array}\right) \text {, with inverse } G_{p}^{-1}=\left(\begin{array}{cc}
1 & 2 p_{1} \\
2 p_{1} & 1+4 p_{1}^{2}
\end{array}\right) .
$$

We obtain $(X, Y)_{p}=X^{\top} G_{p} Y$
The exponential and logarithmic map are given as

$$
\exp _{p}(X)=\binom{p_{1}+X_{1}}{p_{2}+X_{2}+X_{1}^{2}}, \quad \log _{p}(q)=\binom{q_{1}-p_{1}}{q_{2}-p_{2}-\left(q_{1}-p_{1}\right)^{2}} .
$$

Manifolds.jl:
Implement these functions on MetricManifold($\mathbb{R}^{\wedge} 2$, RosenbrockMetric()).

The Riemannian Gradient w.r.t. the new Metric

Let $f: \mathcal{M} \rightarrow \mathbb{R}$. Given the Euclidean gradient $\nabla f(p)$, its Riemannian gradient $\operatorname{grad} f: \mathcal{M} \rightarrow T \mathcal{M}$ is given by

$$
\operatorname{grad} f(p)=G_{p}^{-1} \nabla f(p)
$$

While we could implement this denoting $\nabla f(p)=\left(\begin{array}{ll}f_{1}^{\prime}(p) & f_{2}^{\prime}(p)\end{array}\right)^{\top}$ using

$$
\left\langle\operatorname{grad} f(q), \log _{q} p\right\rangle_{q}=\left(p_{1}-q_{1}\right) f_{1}^{\prime}(q)+\left(p_{2}-q_{2}-\left(p_{1}-q_{1}\right)^{2}\right) f_{2}^{\prime}(q)
$$

but it is automatically done in Manopt.jl.

The Experiment Setup

Algorithms. We now compare

1. The Euclidean gradient descent algorithm on \mathbb{R}^{2},
2. The Riemannian gradient descent algorithm on \mathcal{M},
3. The Difference of Convex Algorithm on \mathbb{R}^{2},
4. The Difference of Convex Algorithm on \mathcal{M}.

For DCA third we split f into $f(x)=g(x)-h(x)$ with

$$
g(x)=a\left(x_{1}^{2}-x_{2}\right)^{2}+2\left(x_{1}-b\right)^{2} \quad \text { and } \quad h(x)=\left(x_{1}-b\right)^{2}
$$

Initial point. $p_{0}=\frac{1}{10}\binom{1}{2}$ with cost $f\left(p_{0}\right) \approx 7220.81$.
Stopping Criterion. $d_{\mathcal{M}}\left(p^{(k)}, p^{(k-1)}\right)<10^{-16}$ or $\left\|\operatorname{grad} f\left(p^{(k)}\right)\right\|_{p}<10^{-16}$.

The Results

- Euclidean GD - Euclidan DCA

Algorithm	Runtime	\# Iterations
Euclidean GD	305.567 sec.	53073227
Euclidean DCA	58.268 sec.	50588
Riemannian GD	18.894 sec.	2454017
Riemannian DCA	7.704 sec.	2459

Summary

We considered two different ways to generalize the Fenchel conjugate to Riemannian manifolds and how they are used in

- Nonsmooth Riemannian Optimization: m-Fenchel Dual and the Chambolle-Pock algorithm
- Nonconvex Riemannian Optimization: Fenchel Dual and the Difference of Convex algorithm
- Numerics in Julia:

Manopt.jl together with ManifoldsBase.jl \& Manifolds.jl

Selected References

Axen, S. D., M. Baran, RB, and K. Rzecki (2023). "Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds". In: ACM Transactions on Mathematical Software. Accepted for pulication. DOI: 10.1145/3618296. arXiv: 2106.08777.

RB, O. P. Ferreira, E. M. Santos, and J. C. d. O. Souza (2023). The difference of convex algorithm on Hadamard manifolds. arXiv: 2112.05250.

RB, R. Herzog, M. Silva Louzeiro, D. Tenbrinck, and J. Vidal-Núñez (Jan. 2021). "Fenchel duality theory and a primal-dual algorithm on Riemannian manifolds". In: Foundations of Computational Mathematics 21.6, pp. 1465-1504. DOI: 10.1007/s10208-020-09486-5. arXiv: 1908.02022.

Boumal, N. (2023). An introduction to optimization on smooth manifolds. Cambridge University Press. URL: https://www.nicolasboumal.net/book.

Silva Louzeiro, M., RB, and R. Herzog (2022). "Fenchel Duality and a Separation Theorem on Hadamard Manifolds". In: SIAM Journal on Optimization 32.2, pp. 854-873. ISSN: 1052-6234, 1095-7189. DOI: 10.1137/21M1400699. arXiv: 2102.11155.

Souza, J. C. d. O. and P. R. Oliveira (2015). "A proximal point algorithm for DC fuctions on Hadamard manifolds". In: Journal of Global Optimization 63.4, pp. 797-810. DOI: 10.1007/s10898-015-0282-7.

[^0]: ${ }^{1}$ see https://manoptjl.org/stable/solvers/difference_of_convex/

[^1]: ${ }^{2}$ available online in ManoptExamples.jl

