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Motivation
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The Rayleigh Quotient
When minimizing the Rayleigh quotient for a symmetric A ∈ Rn×n

argmin
x∈Rn\{0}

xTAx
‖x‖2

Any eigenvector x∗ to the smallest EV λ is a minimizer
no isolated minima and Newton’s method diverges
Constrain the problem to unit vectors ‖x‖ = 1!

classic constrained optimization (ALM, EPM,...)
Today Utilize the geometry of the sphere

unconstrained optimization argmin
p∈Sn−1

pTAp

adapt unconstrained optimization to Riemannian manifolds.
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The Generalized Rayleigh Quotient
More general. Find a basis for the space of eigenvectors to
λ1 ≤ λ2 ≤ · · · ≤ λk:

argmin
X∈St(n,k)

tr(XTAX), St(n, k) :=
{

X ∈ Rn×k ∣∣XTX = I
}
,

a problem on the Stiefel manifold St(n, k)
Invariant under rotations within a k-dim subspace.

Find the best subspace!

argmin
span(X)∈Gr(n,k)

tr(XTAX), Gr(n, k) :=
{
span(X)

∣∣X ∈ St(n, k)
}
,

a problem on the Grassmann manifold Gr(n, k) = St(n, k)/O(k).
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Optimization on Riemannian Manifolds

We are looking for numerical algorithms to find

argmin
p∈M

f(p)

where
▶ M is a Riemannian manifold
▶ f :M→ R is a function

f might be nonsmooth and/or nonconvex
M might be high-dimensional
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A Riemannian Manifold M

A d-dimensional Riemannian manifold can be informally
defined as a set M covered with a “suitable” collection of
charts, that identify subsets of M with open subsets of Rd

and a continuously varying inner product on the tangent
spaces.

[Absil, Mahony, and Sepulchre 2008]
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A Riemannian Manifold M
Notation.
▶ Logarithmic map logp q = γ̇(0; p, q)
▶ Exponential map expp X = γp,X(1)
▶ Geodesic γ(·; p , q)
▶ Tangent space TpM
▶ inner product (· , ·)p

γ(·; p , q)p q

expp
logp

X
logp p

TpM

M
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(Geodesic) Convexity

[Sakai 1996; Udrişte 1994]

A set C ⊂M is called (strongly geodesically) convex
if for all p, q ∈ C the geodesic γ(·; p , q) is unique and lies in C.

A function F : C → R is called (geodesically) convex
if for all p, q ∈ C the composition F(γ(t; p , q)), t ∈ [0, 1], is convex.
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The Riemannian Subdifferential

The subdifferential of f at p ∈ C is given by [Lee 2003; Udrişte 1994]

∂Mf(p) :=
{
ξ ∈ T ∗pM

∣∣ f(q) ≥ f(p) + 〈ξ , logp q〉p for q ∈ C
}
,

where
▶ T ∗pM is the dual space of TpM,
▶ 〈· , ·〉p denotes the duality pairing on T ∗pM×TpM
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Musical Isomorphisms

Using the tangent space TpM and its dual T ∗pM,
the inner product (· , ·)p and the duality pairing 〈· , ·〉,

the musical isomorphisms are [Lee 2003]

♭ : TpM→ T ∗pM and ♯ : T ∗pM→ TpM

such that for any X,Y ∈ TpM and ξ ∈ T ∗pM we have

〈X♭ ,Y〉 = (X , Y)p and (ξ♯ , Y)p = 〈ξ ,Y〉
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The Proximal Map

For a function f :M→ R and a λ > 0 we define the proximal map as
[Moreau 1965; Rockafellar 1970; O. Ferreira and Oliveira 2002]

proxλf(p) := argmin
q∈M

dM(q, p)2 + λf(q).

Properties.
▶ Minimizer p∗ of f ⇔ fix point of the prox proxλf(p∗) = p∗
▶ If f is proper, convex, lsc.: argmin unique.
▶ proximal point algorithm (PPA): p(k+1) = proxλf(p(k)) converges to p∗
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Nonsmooth splittings
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Splitting Methods & Algorithms

For argmin
p∈M

f(p) + g(p) we can use

▶ Cyclic Proximal Point Algorithm (CPPA) [Bačák 2014]

▶ (parallel) Douglas–Rachford Algorithm (PDRA) [RB, Persch, and Steidl 2016]

which are for M = Rn also equivalend to [Setzer 2011; O’Connor and Vandenberghe 2018]

▶ Primal-Dual Hybrid Gradient Algorithm (PDHGA) [Esser, Zhang, and Chan 2010]

▶ Chambolle-Pock Algorithm (CPA)
[Chambolle and Pock 2011; Pock, Cremers, Bischof, and Chambolle 2009]

Challenge.
These rely on the dual space of Rn, which M does not have.
More precisely. They employ the Fenchel conjugate.



12

The Fenchel Conjugate
The Fenchel conjugate of a function f : Rn → R is given by

f ∗(ξ) := sup
x∈Rn
〈ξ, x〉 − f(x) = sup

x∈Rn

(
ξ
−1

)T (
x

f(x)

)

▶ given ξ ∈ Rn: maximize the distance between ξT· and f
▶ can also be written in the epigraph

The Fenchel biconjugate reads

f ∗ ∗(x) = (f ∗) ∗(x) = sup
ξ∈Rn
〈ξ , x〉 − f ∗(ξ).
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Illustration of the Fenchel Conjugate
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Properties of the Fenchel Conjugate
[Rockafellar 1970]

▶ The Fenchel conjugate f ∗ is convex (even if f is not)
▶ f ∗∗ is the largest convex, lsc function with f ∗∗ ≤ f
▶ If f(x) ≤ g(x) for all x ∈ Rn ⇒ f ∗(ξ) ≥ g ∗(ξ) for all ξ ∈ Rn

▶ Fenchel–Moreau Theorem. f convex, proper, lsc ⇒ f ∗∗ = f.
▶ Fenchel–Young inequality.

f(x) + f ∗(ξ) ≥ ξTx for all x, ξ ∈ Rn

▶ For a proper, convex function f

ξ ∈ ∂f(x)⇔ f(x) + f ∗(ξ) = ξTx

▶ For a proper, convex, lsc function f, then

ξ ∈ ∂f(x)⇔ x ∈ ∂f ∗(ξ)
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The (Riemannian) m-Fenchel Conjugate
[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

Idea. Localize to C ⊂M around a point m which “acts as” 0.
The m-Fenchel conjugate of a function f : C → R is given by

f ∗m(ξm) := sup
X∈LC,m

{
〈ξm ,X〉 − f(expm X)

}
,

where LC,m := {X ∈ TmM | q = expm X ∈ C and ‖X‖p = d(q, p)}.

Let m′ ∈ C. The mm′-Fenchel-biconjugate F∗∗mm′ : C → R is given by

F∗∗mm′(p) = sup
ξm′∈T ∗

m′M

{
〈ξm′ , logm′ p〉 − F∗m(Pm←m′ξm′)

}
,

where usually we only use the case m = m′.
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Properties of the m-Fenchel Conjugate

▶ f ∗m is convex on T ∗mM
▶ If f(p) ≤ g(p) for all p ∈ C ⇒ f ∗m(ξm) ≥ g ∗m(ξm) for all ξm ∈ T ∗mM
▶ Fenchel–Moreau Theorem f ◦ expm convex (on TmM), proper, lsc,
⇒ f ∗∗mm = f on C.

▶ Fenchel-Young inequality: For a proper, convex function f ◦ expm

ξp ∈ ∂Mf(p)⇔ f(p) + f ∗m(Pm←pξp) = 〈Pm←pξp , logm p〉.

▶ For a proper, convex, lsc function f ◦ expm

ξp ∈ ∂Mf(p)⇔ logm p ∈ ∂f ∗m(Pm←pξp).
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The Chambolle–Pock Algorithm
From the pair of primal-dual problems [Chambolle and Pock 2011]

min
x∈Rn

f(x) + g(Kx), K linear,

max
ξ∈Rm

− f ∗(−K∗ξ)− g ∗(ξ)

we obtain for f, g proper convex, lsc the
optimality conditions of a solution (x̂, ξ̂) as

−K∗ξ̂ ∈ ∂f(x̂)
Kx̂ ∈ ∂g ∗(ξ̂)

Chambolle–Pock Algorithm. with σ > 0, τ > 0, θ ∈ R reads

x(k+1) = proxσf
(
x(k) − σK∗ξ̄(k)

)
ξ(k+1) = proxτg,∗

(
ξ(k) + τKx(k+1))

ξ̄(k+1) = ξ(k+1) + θ(ξ(k+1) − ξ(k))
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Saddle Point Formulation on Manifolds
On manifolds, we consider for

min
p∈M

f(p) + g(Λp), Λ:M→N ,

where f is geodesically convex, and g ◦ expn is convex for some n ∈ N .

Saddle point formulation. Using the n-Fenchel conjugate g ∗n of g:

min
p∈C

max
ξn∈T ∗nN

〈ξn , logn Λ(p)〉+ f(p)− g ∗n (ξn).

But. Λ is inherently nonlinear and inside a logarithmic map ⇒ no adjoint.

Approach. Linearization: Choose m such that n = Λ(m) and [Valkonen 2014]

Λ(p) ≈ expΛ(m) DΛ(m)[logm p].
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The exact Riemannian Chambolle–Pock Algorithm
[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021; Chambolle and Pock 2011]

Input: m, p(0) ∈ C ⊂M, n = Λ(m), ξ(0)n ∈ T ∗nN , and σ, τ, θ > 0
1: k← 0
2: p̄(0) ← p(0)

3: while not converged do
4: ξ

(k+1)
n ← proxτg ∗n

(
ξ
(k)
n + τ

(
lognΛ(p̄(k))

)
♭
)

5: p(k+1) ← proxσf

(
expp(k)

(
Pp(k)←m

(
− σDΛ(m)∗[ξ

(k+1)
n ]

)
♯
))

6: p̄(k+1) ← expp(k+1)
(
−θ logp(k+1) p(k))

7: k← k + 1
8: end while

Output: p(k)
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Difference of Convex
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Difference of Convex

We aim to solve
argmin

p∈M
f(p)

where
▶ M is a Riemannian manifold
▶ f :M→ R is a difference of convex function, i. e. of the form

f(p) = g(p)− h(p)

▶ g, h :M→ R are convex, lower semicontinuous, and proper
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The Euclidean DCA
Idea 1. At xk, approximate h(x) by its affine minorization
hk(x) := h(x(k)) + 〈x− x(k), y(k)〉 for some y(k) ∈ ∂h(xk).
⇒ minimize g(x)− hk(x) = g(x) + h(x(k))− 〈x− x(k), y(k)〉 instead.

Idea 2. Using duality theory finding a new y(k) ∈ ∂h(x(k)) is equivalent to

y(k) ∈ argmin
y∈Rn

{
h∗(y)− g∗(y(k−1))− 〈y− y(k−1), x(k)〉

}
Idea 3. Reformulate 2 using a proximal map ⇒ DCPPA

On manifolds: [Almeida, Neto, Oliveira, and Souza 2020; Souza and Oliveira 2015]

In the Euclidean case, all three models are equivalent.
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A Fenchel Duality on a Hadamard Manifold

[Silva Louzeiro, RB, and Herzog 2022]

Definition
Let f :M→ R. The Fenchel conjugate of f is the function
f ∗ : T ∗M→ R defined by

f ∗(p, ξ) := sup
q∈M

{
〈ξ, logp q〉 − f(q)

}
, (p, ξ) ∈ T ∗M.
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The Dual Difference of Convex Problem
Given the Difference of Convex problem

argmin
p∈M

g(p)− h(p)

and the Fenchel duals g∗ and h∗ we can state the dual difference of
convex problem as [RB, O. P. Ferreira, Santos, and Souza 2023]

argmin
(p,ξ)∈T∗M

h∗(p, ξ)− g∗(p, ξ).

On M = Rn this indeed simplifies to the classical dual problem.
[RB, O. P. Ferreira, Santos, and Souza 2023]

Theorem.

inf
(q,X)∈T ∗M

{
h∗(q,X)− g∗(q,X)

}
= inf

p∈M
{g(p)− h(p)} .



24

The Dual Difference of Convex Problem

The primal and dual Difference of convex problem

argmin
p∈M

g(p)− h(p) and argmin
(p,ξ)∈T∗M

h∗(p, ξ)− g∗(p, ξ)

are equivalent in the following sense.

Theorem. [RB, O. P. Ferreira, Santos, and Souza 2023]

If p∗ is a solution of the primal problem, then (p∗, ξ∗) ∈ T∗M is a solution
for the dual problem for all ξ∗ ∈ ∂Mh(p∗) ∩ ∂Mg(p∗).
If (p∗, ξ∗) ∈ T∗M is a solution of the dual problem for some
ξ∗ ∈ ∂Mh(p∗) ∩ ∂Mg(p∗), then p∗ is a solution of the primal problem.
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Derivation of the Riemannian DCA
We consider the linearization of h at some point p(k):
With ξ ∈ ∂h(p(k)) we get

hk(p) = h(p(k)) + 〈ξ , logp(k) p〉p(k)

Using musical isomorphisms we identify X = ξ♯ ∈ TpM,
where we call X a subgradient. Locally hk minorizes h, i. e.

hk(q) ≤ h(q) locally around p(k)

⇒ Use −hk(p) as upper bound for −h(p) in f.

Note. On Rn the function hk is linear.
On a manifold hk is not necessarily convex, even on a Hadamard manifold.
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The Riemannian DC Algorithm
[RB, O. P. Ferreira, Santos, and Souza 2023]

Input: An initial point p0 ∈ dom(g), g and ∂Mh
1: Set k = 0.
2: while not converged do
3: Take X(k) ∈ ∂Mh(p(k))
4: Compute the next iterate pk+1 as

p(k+1) ∈ argmin
p∈M

g(p)−
(
Xk , logp(k) p

)
p(k) . (∗)

5: Set k← k + 1
6: end while

Note. In general the subproblem (∗) can not be solved in closed form.
But an approximate solution yields a good candidate.
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Convergence of the Riemannian DCA
[RB, O. P. Ferreira, Santos, and Souza 2023]

Let {p(k)}k∈N and {X(k)}k∈N be the iterates and subgradients of the
RDCA.
Theorem.
If p̄ is a cluster point of {p(k)}k∈N, then p̄ ∈ dom(g) and there exists a
cluster point X̄ of {X(k)}k∈N s. t. X̄ ∈ ∂g(p̄) ∩ ∂h(p̄).
⇒ Every cluster point of {p(k)}k∈N, if any, is a critical point of f.

Proposition. Let g be σ-strongly (geodesically) convex. Then

f(pk+1) ≤ f(p(k))− σ

2 d2(p(k), pk+1).

and
∞∑

k=0
d2(p(k), pk+1) <∞, so in particular lim

k→∞
d(p(k), pk+1) = 0.
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Software
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ManifoldsBase.jl

[Axen, Baran, RB, and Rzecki 2023]
Goal. Provide an interface to implement and use Riemannian manifolds.

Interface AbstractManifold to model manifolds

Functions like exp(M, p, X), log(M, p, X) or retract(M, p, X, method).

Decorators for implicit or explicit specification of an embedding, a
metric, or a group,

Efficiency by providing in-place variants like exp!(M, q, p, X)
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Manifolds.jl

[Axen, Baran, RB, and Rzecki 2023]

Goal. Provide a library of Riemannian manifolds,
that is efficiently implemented and well-documented

Meta. generic implementations for Mn×m, M1 ×M2,
vector- and tangent-bundles, esp. TpM, or Lie groups

Library. Implemented functions for
▶ Circle, Sphere, Torus, Hyperbolic, Projective Spaces
▶ (generalized, symplectic) Stiefel, (generalized) Grassmann, Rotations
▶ Symmetric Positive Definite matrices
▶ Multinomial, Symmetric, Symplectic matrices
▶ Tucker & Oblique manifold, Kendall’s Shape space
▶ ...
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Manopt.jl
Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s,
implement initialize_solver!(p, s) and step_solver!(p, s, i)
⇒ an algorithm in the Manopt.jl interface

Highlevel interface like gradient_descent(M, f, grad_f)
on any manifold M from Manifolds.jl.
Provide debug output, recording, cache & counting capabilities,
as well as a library of step sizes and stopping criteria.

Manopt family.
manoptjl.org

[RB 2022]
manopt.org

[Boumal, Mishra, Absil, and Sepulchre 2014]
pymanopt.org

[Townsend, Koep, and Weichwald 2016]

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org
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Manopt.jl
Algorithms.
Cost-based Nelder-Mead, Particle Swarm
Subgradient-based Subgradient Method
Gradient-based Gradient Descent, Conjugate Gradient, Stochastic,

Momentum, Nesterov, Averaged, …
Quasi-Newton: (L-)BFGS, DFP, Broyden, SR1,...

Hessian-based Trust Regions, Adaptive Regularized Cubics (soon)
nonsmooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point
constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe
nonconvex Difference of Convex Algorithm, DCPPA

manoptjl.org

https://www.manoptjl.org
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Implementation of the DCA
The algorithm is implemented and released in Julia using Manopt.jl1.
It can be used with any manifold from Manifolds.jl

A solver call looks like
q = difference_of_convex_algorithm(M, f, g, ∂h, p0)

where one has to implement f(M, p), g(M, p), and ∂h(M, p).

▶ a sub problem is automatically generated
▶ an efficient version of its cost and gradient is provided
▶ you can specify the sub-solver to using sub_state=

to also set up the specific parameters of your favourite algorithm

1see https://manoptjl.org/stable/solvers/difference_of_convex/

https://manoptjl.org/stable/solvers/difference_of_convex/
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Numerical Examples
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The ℓ2-TV Model
[Rudin, Osher, and Fatemi 1992; Lellmann, Strekalovskiy, Koetter, and Cremers 2013; Weinmann, Demaret, and Storath 2014]

For a manifold-valued image q ∈M, M = N d1,d2 , we compute

argmin
p∈M

1
2αd2

M(p, q) + ‖Λ(p)‖g,s,1

with
▶ “forward differences” Λ:M→ (TM)d1−1, d2−1, 2,

p 7→ Λ(p) =
(
(logpi pi+e1 , logpi pi+e2)

)
i∈{1,...,d1−1}×{1,...,d2−1}

▶ ‖X‖g,s,1 similar to a collaborative TV, [Duran, Moeller, Sbert, and Cremers 2016]

⇒ anisotropic TV (s = 1) and isotropic TV (s = 2)
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Numerical Example for a P(3)-valued Image

P(3)-valued data. anisotropic TV, α = 6.
▶ in each pixel we have a symmetric positive definite matrix
▶ Applications: denoising/inpainting e.g. of DT-MRI data
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Numerical Example for a P(3)-valued Image

P(3)-valued data. anisotropic TV, α = 6.

Approach. CPPA as benchmark
[Bačák 2014; RB, Persch, and Steidl 2016; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

CPPA PDRA lRCPA

parameters λk = 4
k λ = 0.58 σ = τ = 0.4

β = 0.93 γ = 0.2, m = I
iterations 4000 122 113
runtime 1235 s. 380 s. 96.1 s.
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Numerical Example for a P(3)-valued Image
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Rosenbrock and First Order Methods
Problem. We consider the classical Rosenbrock example2

argmin
x∈R2

a
(
x2

1 − x2
)2

+
(
x1 − b

)2
,

where a, b > 0, usually b = 1 and a� b, here: a = 2 · 105.

Known Minimizer x∗ =
(

b
b2

)
with cost f(x∗) = 0.

Goal. Compare first-order methods, e. g. using the (Euclidean) gradient

∇f(x) =
(

4a(x2
1 − x2)

−2a(x2
1 − x2)

)
+

(
2(x1 − b)

0

)

2available online in ManoptExamples.jl

https://juliamanifolds.github.io/ManoptExamples.jl/stable/examples/Difference-of-Convex-Rosenbrock/
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A “Rosenbrock-Metric” on R2

In our Riemannian framework, we can introduce a new metric on R2 as

Gp :=

(
1 + 4p2

1 −2p1
−2p1 1

)
, with inverse G−1

p =

(
1 2p1

2p1 1 + 4p2
1

)
.

We obtain (X , Y)p = XTGpY

The exponential and logarithmic map are given as

expp(X) =
(

p1 + X1
p2 + X2 + X2

1

)
, logp(q) =

(
q1 − p1

q2 − p2 − (q1 − p1)
2

)
.

Manifolds.jl:
Implement these functions on MetricManifold(R^2, RosenbrockMetric()).
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The Riemannian Gradient w.r.t. the new Metric

Let f :M→ R. Given the Euclidean gradient ∇f(p), its Riemannian
gradient grad f :M→ TM is given by

grad f(p) = G−1
p ∇f(p).

While we could implement this denoting ∇f(p) =
(
f ′
1(p) f ′

2(p)
)T using〈

grad f(q), logq p
〉

q
= (p1 − q1)f

′

1(q) + (p2 − q2 − (p1 − q1)
2)f ′

2(q),

but it is automatically done in Manopt.jl.
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The Experiment Setup
Algorithms. We now compare

1. The Euclidean gradient descent algorithm on R2,
2. The Riemannian gradient descent algorithm on M,
3. The Difference of Convex Algorithm on R2,
4. The Difference of Convex Algorithm on M.

For DCA third we split f into f(x) = g(x)− h(x) with

g(x) = a
(
x2

1 − x2
)2

+ 2
(
x1 − b

)2 and h(x) =
(
x1 − b

)2
.

Initial point. p0 = 1
10

(
1
2

)
with cost f(p0) ≈ 7220.81.

Stopping Criterion. dM(p(k), p(k−1)) < 10−16 or ‖grad f(p(k))‖p < 10−16.



39

The Results

100 101 102 103 104 105 106 107
10−16

10−10

10−4

102

Iter. k

f(p(k))
Euclidean GD Euclidan DCA

Riemannian GD Riemannian DCA

Algorithm Runtime # Iterations
Euclidean GD 305.567 sec. 53 073 227
Euclidean DCA 58.268 sec. 50 588
Riemannian GD 18.894 sec. 2 454 017
Riemannian DCA 7.704 sec. 2 459
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Summary

We considered two different ways to generalize the Fenchel conjugate to
Riemannian manifolds and how they are used in
▶ Nonsmooth Riemannian Optimization:

m-Fenchel Dual and the Chambolle-Pock algorithm
▶ Nonconvex Riemannian Optimization:

Fenchel Dual and the Difference of Convex algorithm
▶ Numerics in Julia:

Manopt.jl together with ManifoldsBase.jl & Manifolds.jl
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