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Manifold-valued Signal & Image Processing

Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

» phase-valued data (S?)

» wind-fields, GPS (S?)

» DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

Artificial noisy phase-valued data.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...
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Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

» phase-valued data (S?)

» wind-fields, GPS (S?)

» DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

InNSAR-Data of Mt. Vesuvius.

[Rocca, Prati, and Guarnieri 1997]

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...




Manifold-valued Signal & Image Processing

Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

» phase-valued data (S?)

» wind-fields, GPS (S?)

» DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

Artificial noisy data on the sphere S2.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...




Manifold-valued Signal & Image Processing

Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

» phase-valued data (S?)

» wind-fields, GPS (S?)

» DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

Artificial diffusion data,
each pixel is a symmetric positive matrix.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...




Manifold-valued Signal & Image Processing

Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

» phase-valued data (S?)

» wind-fields, GPS (S?)

» DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

DT-MRI of the human brain.

Camino Profject: cmic.cs.ucl.ac.uk/camino

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...



http://cmic.cs.ucl.ac.uk/camino

Manifold-valued Signal & Image Processing

Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

» phase-valued data (S?)

» wind-fields, GPS (S?)

» DT-MRI (P(3))

» EBSD, (grain) orientations (SO(n))

Grain orientations in EBSD data.
MTEX toolbox: mtex-toolbox.github.io

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...



https://mtex-toolbox.github.io

A d-dimensional Riemannian manifold M

Notation.

» Geodesic ¥(-; p, q)
Tangent space T, M
inner product (-, -),

Logarithmic map log, g = 7(0; p, q)

vVvyyy

Exponential map exp, X = v, x(1)
where v, x(0) = p and 9, x(0) = X
Parallel transport P,,_,Y “move”
tangent vectors from T, M to TqM

v




The Model

We consider a minimization problem

argencﬂn F(p) + G(A(p))

» M, N are (high-dimensional) Riemannian Manifolds
» F: M — R nonsmooth, (locally, geodesically) convex
» G: N — R nonsmooth, (locally) convex

» A: M — N nonlinear

» C C M strongly geodesically convex.

In image processing.
choose a model, such that finding a minimizer yields the reconstruction




Splitting Methods & Algorithms

On a Riemannian manifold M we have

» Cyclic Proximal Point Algorithm (CPPA) [Bazék 2014]
» (parallel) Douglas—Rachford Algorithm (PDRA) [RB, Persch, and Steidl 2016]
On R"” PDRA is known to be eqUiValent to [Setzer 2011; O'Connor and Vandenberghe 2018]
» Primal-Dual Hybrid Gradient Algorithm (PDHGA) [Esser, Zhang, and Chan 2010]

» Chambolle-Pock Algorithm (CPA)

[Chambolle and Pock 2011; Pock, Cremers, Bischof, and Chambolle 2009]
But on a Riemannian manifold M: /\ no duality theory!
Goals of this talk.

Formulate Duality on a Manifold
Derive a Riemannian Chambolle—Pock Algorithm (RCPA)




Musical Isomorphisms

[Lee 2003]
The dual space T;M of a tangent space 7,M is called cotangent space.
We denote by (-, ) the duality pairing.

We define the musical isomorphisms
> b TobM 3 X X € TiM via (X, Y) = (X, Y), for all Ye T,M
> 1 TIM S & e TpMvia (€, Y), = (£, Y) forall Ye ToM.

which introduces an inner product and parallel transport on/between ToM




B (Geodesic) Convexity

NTNU

[Sakai 1996; Udriste 1994]

A set C C M is called (strongly geodesically) convex
if for all p, g € C the geodesic y(+; p, q) is unique and lies in C.

A function F: C — R is called (geodesically) convex
if for all p, g € C the composition F((t; p, q)), t € [0,1], is convex.



The Subdifferential

The subdifferential of F at p € C is given by [Lee 2003; Udriste 1994]

OMmF(p) = {¢ € TAM| F(q) > F(p) + (¢, log,q) for g C},
where
» Ty M is the dual space of TpM,
» (-,-) denotes the duality pairing on T;M x T,M




The Euclidean Fenchel Conjugate

Let f: R” — R be proper and convex.
We define the Fenchel conjugate f*: R” — R of fby

F&) = sup (&%) = flx) = sup (fl)T (f();))

> interpretation: maximize the distance of £'x to f
= extremum seeking problem on the epigraph
The Fenchel biconjugate reads

FE00 = (F) (%) = sup (€, x) — (&)

€ERN




lllustration of the Fenchel Conjugate

The function f The Fenchel conjugate f*
1 | ()

05|

1




Properties of the Euclidean Fenchel Conjugate

| 2

>
>
>
>

[Rockafellar 1970]

The Fenchel conjugate f* is convex (even if fis not)

f* is the largest convex, Isc function with £#* < f

If {x) < g(x) holds for all x € R" then (&) > g*(&) holds for all £ € R”
Fenchel-Moreau theorem: f convex, proper, Isc = f* = f.

Fenchel-Young inequality:
Ax)+ (&) > €x forall x,&£eR”
For a proper, convex function f
£ €O & fx) + F () = T
For a proper, convex, Isc function f, then

€ € 0fx) & x € I (&)



B The Riemannian m—Fenchel Conjugate
[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Ndafiez 2021]
alternative approaches: [Ahmadi Kakavandi and Amini 2010; Silva Louzeiro, RB, and Herzog 2022]
Idea: Introduce a point on M to “act as” 0.
Let me C C M be given and F: C — R.
The m-Fenchel conjugate F},: T:M — R is defined by

Fr(&m) = sup {{&m.X) — Flexpy, X)},

XEEC,m
where Lo = {X € TpM | g=exp,, X € C and || X||, = d(q,p)}.

Let m" € C. The mn'-Fenchel-biconjugate Fi* - C — R is given by

F:r;km’(p) = sup {<£m’ ) Iogm’ P> - Prkn(Pmem’Em/)}‘
Em €T M

usually we only use the case m = n'.




B Properties of the m-Fenchel Conjugate

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Nafiez 2021]

F:, is convex on T:M

F(p) < G(p) holds for all p e C = F},(ém) > G (Em) holds for all

€m € TyM

» Fenchel-Moreau theorem: Fo exp,, convex (on T, M), proper, Isc,

then Fir, = Fon C.

» Fenchel-Young inequality: For a proper, convex function Fo exp,,

>
>

&p € OMF(P) & F(p) + Fr(Pmplp) = (Pmepbp:108m P)-

» For a proper, convex, Isc function Foexp,,

§p € OMF(p) < log, p € OF (P pp)-




B Proximal Map

NTNU For F: M — R and A > 0 we define the Proximal Map as

[Moreau 1965; Rockafellar 1970; Ferreira and Oliveira 2002]

proxy g p == arg min d(u, p)? + AF(u).
ueM

I' For a Minimizer u* of F we have prox,gu* = u*.
» For F proper, convex, Isc:
» the proximal map is unique.
» Proximal-Point-Algorithm:
Xk = ProxXygXk—1 converges to arg min F

» g = prox,gp is equivalent to

(logy p)” € OrF(q)

> =



The Chambolle-Pock Algorithm

[Chambolle and Pock 2011]
From the pair of primal-dual problems

m]iRn fix) + g(Kx), K linear,
xeR"

max — f*(—=K*¢) — g(¢)

£eERM

we obtain for f, g proper convex, Isc the
optimality conditions (OC) for a solution (X, &) as ,
Chambolle-Pock Algorithm. with ¢ > 0, 7 > 0, 8 € R reads

of > —K*¢
og"(£)> Kx
{‘(k-i-l) _ f(k+1) + 9(§(k+1) _ é‘(k))




Saddle Point Formulation
Let F be geodesically convex, Go exp, be convex (on T,N).

From

mi

min F(p) + G(A(P))

we derive the saddle point formulation for the n-Fenchel conjugate of G as

r;eig gnrg%fj\/@n ,log, A(p)) + F(p) — G,(&n)-

But A: M — N is a non-linear operator!
For Optimality Conditions and the Dual Prolem: What's A*?
Approach. Linearization: [Valkonen 2014]

A(p) = expp(m) DA(m)[log, pl




B The Exact Riemannian Chambolle—Pock Algorithm (eRCPA)

NTNU

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Ndafez 2021]
Input: m, p¥ € RY , n=N(m), {,(70) € R? |, and parameters o, 7, 6 > 0
1: k<0
2. B0« p
3: while not converged do
4

i',(,kfl) < ProX,g: ({'ff) +7(log, /\(ﬁ(k)»))

5: Pt prox, £ p) + Pp(m_m( - aD/\(m)*[{,(,kH)]): )
plkt1) o plkt1) +9(p(k+1) _ p(k))
k< k+1

8: end while
Output: p¥)

0)



Generalizations & Variants of the RCPA

Classically
[Chambolle and Pock 2011]

» change 0 = oy, T = Tk, 8 = 0 during the iterations
» introduce an acceleration y
» relax dual ¢ instead of primal p (switches lines 4 and 5)

FU rthermOre we [RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Nafiez 2021]

» introduce the IRCPA: linearize A, i.e., adopt the Euclidean case from

[Valkonen 2014]
Iogn A(I_)(k)) - IDn(—/\(m) D/\(m)[logm I_)(k)]

» choose n # A(m) introduces a parallel transport
DA(m) 65 M) = DAY [Py ]

» change m = m(K), n = n(k during the iterations




A Constant and a Conjecture

We define )
C(k) =~ (M. %) + (&, DAm)[Gi]),

where

Ck:Pmep (|ng (k+1)

— P g 10850 P) — log, pTY) + log b,
and p is a minimizer of the primal problem.

Remark.

For M = RY: ¢, = pW — pW = —o(DA(m))*[E)] = C(k) = o.

Conjecture.
Assume o7 < ||[DA(m)||2. Then C(k) >0 for all k> K, K € N.




Convergence of the IRCPA

Theorem. [RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Ndfiez 2021]

Let M, N be Hadamard. Assume that the linearized problem

Iggi/\rlt gnrg%év«D/\(m))*[En] ,logm p) + F(p) — GL(&n).

has a saddle point (p, E,,)
Choose o, 7 such that
o1 < |DA(m)||?

and assume that C(k) > 0 for all k> K. Then it holds
1. the sequence (p(k),fgk)) remains bounded,

2. there exists a saddle-point (p/, £ such that p(®¥ — p/ and §$,k) — &l




NTNU

B Implementing a Riemannian manifold Y

[

ManifoldsBase.jl introduces a manifold type with its field F € {R,C, H} as
parameter to provide an interface for implementing functions like

» inner(M, p, X, Y) for the Riemannian metric (X, Y),
» exp(M, p, X) and log(M, p, q),
» more general: retract(M, p, X, m), where m is a retraction method

» similarly: parallel_transport(M, p, X, q) and
vector_transport_to(M, p, X, q, m)
for your manifold, which is a subtype of Manifold.
© mutating version exp! (M, q, p, X) works in place in g

® basis for generic algorithms working on any Manifold and generic functions
like norm(M,p,X), geodesic(M, p, X) and shortest_geodesic(M, p, q)

& juliamanifolds.github.io/ManifoldsBase.jl /


https://juliamanifolds.github.io/ManifoldsBase.jl/

>

| 4
>

Features.

different metrics
Lie groups
Build manifolds using
» Product manifold
Ml X Mz
» Power manifold MM
» Tangent bundle

perform statistics

well-documented, including
formulae and references

well-tested, >98 % code
coverage, unified coding style

Manifolds.jl is based on the ManifoldsBase.jl interface.

[Axen, Baran, RB, and Rzecki 2021]

B Manifolds.jl: A Library of Manifolds in Julia 'y)

Manifolds. For example

>

vVvYvyVvyVvyy

>

(unit) Sphere

Circle & Torus
Fixed Rank Matrices
Stiefel & Grassmann
Hyperbolic space
Rotations

Symmetric positive definite
matrices

Symplectic & Symplectic Stiefel

> ..

& juliamanifolds.github.io/Manifolds.jl /


https://juliamanifolds.github.io/Manifolds.jl/

B Manopt.jl: Optimisation on Manifolds in Julia

]

Features.

» generic algorithm framework:

With Problem P and Options 0
» initialize_solver!(P,0)
» step_solver!(P, 0, i): ith step

® run algorithm: call solve(P,0)
» generic debug and recording
» step sizes and stopping criteria.
Manopt Family.

ee manoptjl.org [RB 2022]

manopt_org [Boumal, Mishra, Absil, and Sepulchre 2014]

pymanoptlorg [Townsend, Koep, and Weichwald 2016]

[RB 2022

Goal. Provide optimisation algorithms on Riemannian manifolds, i.e. based on
ManifoldsBase.jl such that it can be used with all manifolds from Manifolds. j1.

Algoirthms.

| 2

>

vVvyVvyVvyyvyy

Gradient Descent
CG, Stochastic, Momentum, ...

Quasi-Newton
BFGS, DFP, Broyden, SR1, ...

Nelder-Mead, Particle Swarm
Subgradient Method

Trust Regions
Chambolle-Pock
Douglas-Rachford

Cyclic Proximal Point


https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org

B The /2-TV Model

[Rudin, Osher, and Fatemi 1992; Lellmann, Strekalovskiy, Koetter, and Cremers 2013; Weinmann, Demaret, and Storath 2014]
NTNU For a manifold-valued image f€ M, M = N'%:% we compute

1
argmin —F(p) + G(A(p)),  a>0,
pemM &
with
> data term F(p) = 2 d4,(p, )
> “forward differences” A: M — (TM)h—1 =1, 2

A :(l pire, log, pi )
P (p) = ((logp, Pitey logp, pivez) ie{1,.,dh—1}x{1,...,dp—1}

» prior G(X) = || X||g,q,1 similar to a collaborative TYburan, Moelier, Sbert, and Cremers 2016]
= Pproxyg: given in closed form for g =1 (anisotropic TV) and g = 2
(isotropic TV).




Numerical Example for a P(3)-valued Image

AN

P(3)-valued data.

anisotropic TV, @ = 6.
» in each pixel we have a symmetric positive definite matrix

» Applications: denoising/inpainting e.g. of DT-MRI data




Numerical Example for a P(3)-valued Image

aistrlc TV, o = 6.

3)-valued data.

P(

Appl’oach. CPPA as benchmark [Bagsk 2014; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Nafiez 2021]

CPPA PDRA IRCPA
)\k:% A =0.58 oc=7=0.4
parameters B=093 =02 m=]I
iterations 4000 122 113

runtime 1235s. 380s. 96.1s.




Numerical Example for a P(3)-valued Image

80 F T T 1 \\\[ T T T T 1 \\\[ T T ; 38‘74 T ]
—— CPPA
g — PDRA
o 601 —IRCPA ||
40 B | | | ]
1 10 100 1,000
Iterations

Appl’oach. CPPA as benchmark [Bagsk 2014; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Nafiez 2021]

CPPA PDRA IRCPA
)\k:2 A =0.58 c=17=0.4
parameters B=093 =02 m=]I
iterations 4000 122 113

runtime 1235s. 380s. 96.1s.




Result, m west (per px.

» pieceweise constant results for both

I different linearizations lead to different models




Basepoint Effect on S?-valued Data

N

Result m mean (per px.) Result, m west (per px.)
2,000 [- ‘ ‘ ‘ ‘ — mean ||
\‘ ——— west
% 1,800 8
o
O

1,600 |

1,400

| | |
150 200 250 300

Iterations




B Summary

NTNU

Summary.
» We introduced a duality framework on manifolds
» we introduced a Riemannian Chambolle—Pock algorithm
» \We saw a Software framework for Optimisation algorithms on manifolds

» Numerical examples illustrates its performance

Outlook.
> Strategies for choosing base points, investigate C(k)
» Investigate constraint optimisation on Manifolds

» look into further applications
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