
Manopt.jl
Numerical Optimization
on Riemannian Manifolds in Julia
Ronny Bergmann
Norwegian University of Science and Technology, Trondheim, Norway.

Software for Optimization on Manifolds
International Conference on Continuous Optiomization (ICCOPT)
Bethlehem, PA, USA July 26nd, 2022

N
or

we
gi

an
Un

iv
er

sit
y

of
Sc

ien
ce

an
d

Te
ch

no
lo

gy

Optimization
(Constrained) Optimization aims to find for a function f : Rm → R a point

argmin
x∈Rm

f(x)

Challenges:
▶ constrained to some C ⊂ Rm, e. g. unit vectors
▶ symmetries / invariances

Geometric Optimization aims to find

argmin
p∈M

F(p)

where F is defined on a Riemannian manifold M, e. g. the sphere Sd ⊂ Rd+1.
⇒ the problem is unconstrained (again).

2

A Riemannian manifold M

A d-dimensional Riemannian manifold can be informally defined as a set M covered
with a ‘suitable’ collection of charts, that identify subsets of M with open subsets of
Rd and a continuously varying inner product on the tangent spaces.

[Absil, Mahony, and Sepulchre 2008]

3

A d-dimensional Riemannian manifold M

Notation.
▶ Geodesic γ(·; p , q)
▶ Tangent space TpM
▶ inner product (· , ·)p
▶ Logarithmic map logp q = γ̇(0; p, q)
▶ Exponential map expp X = γp,X(1)

where γp,X(0) = p and γ̇p,X(0) = X
▶ Parallel transport Pq←pY “move”

tangent vectors from TpM to TqM

γ(·; p , q)p q

expp
logp

X
logp p

TpM

M

Y
Pq←pY

4

Example I: The Sphere Sd ⊂ Rd+1

The set of unit vectors or the Sphere

Sd :=
{

p ∈ Rd+1∣∣∥p∥2 = 1
}

is a Riemannian manifold. A tangent space if of the form

TpSd :=
{

X ∈ Rd+1∣∣⟨X, p⟩ = 0
}

The exponential map is given by “following great arcs” from p in direction X we get

expp X = cos(∥X∥2)p + sin(∥X∥2)
X

∥X∥2
,

But the inverse logp q is only locally defined, for example if p = −q are opposite
points, there are infinitely many tangent vectors such that expp X = q.

5

Example II: Stiefel & Grassmann

The Stiefel manifold consists of all orthonormal bases (ONB) for k-dimensional
subspaces of Rn

St(n, k) :=
{

p ∈ Rn×k ∣∣ pTp = Ik
}
,

If we are only interested in the subspace, we obtain the Grassmann manifold

Gr(n, k) :=
{
span(p)

∣∣ p ∈ Rn×k, pTp = Ik},

⇒ All ONBs p ∈ St(n, k) of one subspace are the same point q ∈ Gr(n, k).
Formally we obtain sets of equivalence classes or a quotient structure

Gr(n, k) = St(n, k) / O(k),

6

Implementing a Riemannian manifold

ManifoldsBase.jl introduces a manifold type with its field F ∈ {R,C,H} as parameter
to provide an interface for implementing functions like
▶ inner(M, p, X, Y) for the Riemannian metric (X , Y)p
▶ exp(M, p, X) and log(M, p, q),
▶ more general: retract(M, p, X, m), where m is a retraction method
▶ similarly: parallel_transport(M, p, X, q) and vector_transport_to(M, p, X, q, m)

for your manifold, which is a subtype of Manifold{F}.
mutating version exp!(M, q, p, X) works in place in q

basis for generic algorithms working on any Manifold and generic functions like
norm(M,p,X), geodesic(M, p, X) and shortest_geodesic(M, p, q)

juliamanifolds.github.io/ManifoldsBase.jl/

7

https://juliamanifolds.github.io/ManifoldsBase.jl/

Manifolds.jl – A library of manifolds in Julia
[Axen, Baran, RB, and Rzecki 2021]Manifolds.jl is based on the ManifoldsBase.jl interface.

Features.
▶ different metrics
▶ Lie groups
▶ Build manifolds using

▶ Product manifold M1 ×M2
▶ Power manifold Mn×m

▶ Tangent bundle
▶ Embedded manifolds
▶ perform statistics
▶ well-documented, including

formulae and references
▶ well-tested, >98 % code cov.

Manifolds. For example
▶ (unit) Sphere
▶ Circle & Torus
▶ Fixed Rank Matrices
▶ (Generalized) Stiefel & Grassmann
▶ Hyperbolic space
▶ Rotations, O(n), SO(n), SU(n)
▶ Symmetric positive definite matrices
▶ Symplectic & Symplectic Stiefel
▶ ...

juliamanifolds.github.io/Manifolds.jl/
JuliaCon 2020 youtu.be/md-FnDGCh9M

8

https://juliamanifolds.github.io/Manifolds.jl/
https://youtu.be/md-FnDGCh9M

Manopt.jl – Internal Structure
Manopt.jl is implemented depending only on ManifoldsBase.jl.

A solver for an optimization problem consists of three ingredients
▶ a Problem P that specifies static properties

▶ the manifold M
▶ a cost function F : M → R
▶ (maybe) a gradient gradF : M → TM
▶ (maybe) a Hessian HessF
▶ ...

▶ some Options O containing dynamic data
▶ the current iterate pi
▶ a StoppingCriterion
▶ any parameter required during an iteration

▶ implementation of
1. initialize_solver!(P, O) to initialise a solver run
2. step_solver!(P, O, i) to perform the ith step

9

Running a solver & high level Interfaces
Running a solver consists of

1. generating a Problem P

2. generating some Options O

3. calling solve(P,O)

These steps are usually provided by a high level interface.

Example. For a gradient descent algorithm on a Riemannian manifold one can use
gradient_descent(M, F, gradF, p0)

which performs
1. create

▶ PG = GradientProblem(M, F, gradF)
▶ OG = GradientOptions(p0, gradF(M, p0))

2. runs the algorithm by calling solve(PG,OG)

3. returns the resulting last iterate (calling get_solver_result(OG))

10

Stopping criteria
The Options usually include a StoppingCriterion sc. This is accessed via
stop_solver!(P,O,i) at every iteration i
A StoppingCriterion sc should
▶ be a functor sc(P,O,i) returning true/false
▶ implement get_reason(sc) returning a string with the reason when true was

returned
Combine stopping criteria using sc1 | sc2 or sc1 & sc2

Examples.
▶ StopAfterIteration(N) - stop after N iterations.
▶ StopAfterIteration(N) | StopWhenGradientLess(1e-8)

... or when the gradient is small

11

Within a step: Stepsize & Linesearch
In many algorithms, after determining a direction “to walk into”, e. g.

X = − gradF(p)

there is a Stepsize s left to determine, which is modelled (again) as a functor
sk = s(p,o,i). It can be e. g.
▶ a ConstantStepsize(c)

▶ an ArmijoLinesearch(M)

▶ a NonmonotoneLinesearch(M)

Options O often contain aAbstractRetractionMethod in O.retraction_method
⇒ line search along the curve given by
t -> retract(P.M, O.x, t * X, O.retraction_method)

12

Printing debug output & Record values
Every solver has a debug= keyword using DebugActions, Strings and Symbols, e. g.
debug=[:Iteration , DebugCost(), (:Change, "change: %1.9f\n"), :Stop]

prints
▶ the iteration number and the cost F(pk) (in default format, also :Cost),
▶ the change dM(pk−1, pk) in a specific format (and a line break)
▶ the reason the algorithm stopped at the end

The same with the keyword record= to record values, for example
record=[:Iteration , :Cost, :Iterate]

and set return_options=true
⇒ final state (options finO) are returned.
⇒ use get_record(finO) to get a vector of (i, cost, point) tuples

13

Manopt.jl – Available Solvers
Currently the following solvers are available
▶ Gradient Descent

CG, Stochastic, Momentum, Alternating,
Average, Nesterov, ...

▶ Quasi-Newton
(L-)BFGS, DFP, Broyden, SR1, ...

▶ Nelder-Mead, Particle Swarm
▶ Subgradient Method
▶ Trust Regions
▶ Chambolle-Pock (PDHG)
▶ Inexact Semismooth Newton Method
▶ Douglas-Rachford
▶ Cyclic Proximal Point

The Manopt Family.
manoptjl.org [RB 2022]

manopt.org
[Boumal, Mishra, Absil, and Sepulchre 2014]

pymanopt.org
[Townsend, Koep, and Weichwald 2016]

14

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org

Example Problem: The Riemannian center of mass
The mean of N data points x1, . . . , xN ∈ Rn is

x∗ = 1
N

N∑
i=1

xi ⇔ x∗ = argmin
x∈Rm

1
2N

N∑
i=1

∥x − xi∥2
2

⇒ the minimizer of sum of squared distances
For p1, . . . , pN ∈ M: Riemannian center(s) of mass are [Karcher 1977]

argmin
p∈M

1
2N

N∑
i=1

d2
M(p, pi),

▶ (in general) neither closed form nor unique
▶ For F(p) = 1

2d2
M(p, pi) the gradient is given by gradF(p) = − logp pi

⇒ use gradient descent

15

Example Codes: The Riemannian center of mass
using Manopt, Manifolds , LinearAlgebra
M = Sphere(2)
N = 100

generate N unit vectors
pts = [normalize(randn(3)) for _ in 1:N]

define cost and gradient
F(M, p) = sum(pi -> distance(M, pi, p)^2 / 2N, pts)
grad_F(M, p) = sum(pi -> grad_distance(M, pi, p)/N, pts)

compute a center of mass in place of m
m = copy(M, pts[1])
gradient_descent!(M, F, grad_F, m)

Alternatively: Use a set of proximal maps and cyclic proximal point
proxes = Function[(M,λ,q) -> prox_distance(M,λ/N,p,q,1) for p in pts]
cyclic_proximal_point(M, F, proxes, pts[1])

16

Summary

Manopt.jl is a Julia package that provides
▶ a framework for optimization algorithms on manifolds
▶ a library of optimization algorithms within this framework
▶ includes generic step size / line search functions, debug & record.

based on ManifoldsBase.jl, so it can be used with all manifolds from Manifolds.jl.

Also included. cost functions, gradients, differentials and proximal maps.
...as well as several tutorials at manoptjl.org

Soon. Constrained optimisation algorithms on manifolds,
▶ Augmented Lagrangian Method, Exact Penalty Method [Liu and Boumal 2019]

▶ Frank-Wolfe Method [Weber and Sra 2022]

17

https://manoptjl.org/

References
Absil, P.-A., R. Mahony, and R. Sepulchre (2008). Optimization Algorithms on Matrix Manifolds. Princeton
University Press. doi: 10.1515/9781400830244.
Axen, S. D., M. Baran, RB, and K. Rzecki (2021). Manifolds.jl: An Extensible Julia Framework for Data
Analysis on Manifolds. arXiv: 2106.08777.
RB (2022). “Manopt.jl: Optimization on Manifolds in Julia”. In: Journal of Open Source Software 7.70,
p. 3866. doi: 10.21105/joss.03866.
Boumal, N., B. Mishra, P.-A. Absil, and R. Sepulchre (2014). “Manopt, a Matlab toolbox for optimization
on manifolds”. In: The Journal of Machine Learning Research 15, pp. 1455–1459. url:
https://www.jmlr.org/papers/v15/boumal14a.html.
Karcher, H. (1977). “Riemannian center of mass and mollifier smoothing”. In: Communications on Pure
and Applied Mathematics 30.5, pp. 509–541. doi: 10.1002/cpa.3160300502.
Townsend, J., N. Koep, and S. Weichwald (2016). “Pymanopt: A Python Toolbox for Optimization on
Manifolds using Automatic Differentiation”. In: Journal of Machine Learning Research 17.137, pp. 1–5.
url: http://jmlr.org/papers/v17/16-177.html.
Weber, M. and S. Sra (July 2022). “Riemannian Optimization via Frank-Wolfe Methods”. In: Mathematical
Programming. doi: 10.1007/s10107-022-01840-5.

ronnybergmann.net/talks/2022-ICCOPT-Manoptjl.pdf

18

https://doi.org/10.1515/9781400830244
https://arxiv.org/abs/2106.08777
https://doi.org/10.21105/joss.03866
https://www.jmlr.org/papers/v15/boumal14a.html
https://doi.org/10.1002/cpa.3160300502
http://jmlr.org/papers/v17/16-177.html
https://doi.org/10.1007/s10107-022-01840-5
http://ronnybergmann.net/talks/2022-ICCOPT-Manoptjl.pdf

