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Overview

Task. We aim to solve
argmin

p∈M
f(p)

where
▶ M is a Riemannian manifold
▶ f :M→ R is nonsmooth and possibly high-dimensional

Roadmap.
1. Motivation
2. Algorithms
3. Numerical examples in Manopt.jl



3

Intuition: Embedded Manifolds

Consider h : Rn → Rk, 1 ≤ k ≤ n as an equality constraint h(p) = 0.
If rankDh(p) = k for all p with h(p) = 0, then

M :=
{

p ∈ Rn ∣∣ h(p) = 0
}

is a (smooth embedded sub-)manifold of Rn of dimension m = n− k,
cf. Definition 3.10. [Boumal 2022]

Example. The Sphere Sm ⊂ Rn has h(p) = ∥p∥ − 1 = 0
⇒ We have k = 1 and m = n− 1.

Actually. It is enough to find such a function h locally around every p.
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Intuition: Retractions – “Walking on Manifolds”

Interpretation. With rankDh(p) = k we get dim kerDh(p) = m = n− k
⇒ we have m “directions”, where Dh(p)[X] = 0.
We call the set of these “directions” the Tangent space TpM.
The (disjoint) union of all tangent spaces is called the tangent bundle TM.

Goal. We would like to “walk” into these directions while staying on the
manifold.

Definition. A function R : TM→M, also denoted by Rp : TpM→M for
each p ∈M, is called a retraction
if each curve c(t) = Rp(tX) satisfies c(0) = p and c′(0) = X.
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A Riemannian Manifold M
A d-dimensional Riemannian manifold can be informally defined as a set M
covered with a ‘suitable’ collection of charts, that identify subsets of M with
open subsets of Rd and a continuously varying inner product on the tangent
spaces. [Absil, Mahony, and Sepulchre 2008]

Notation.
▶ Logarithmic map logp q = γ̇(0; p, q)
▶ Exponential map expp X = γp,X(1)
▶ Geodesic γ(·; p , q)
▶ Tangent space TpM
▶ inner product (· , ·)p

γ(·; p , q)p q

expp
logp

X
logp p

TpM

M
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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

Artificial noisy phase-valued data.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...
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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

InSAR-Data of Mt. Vesuvius.
[Rocca, Prati, and Guarnieri 1997]

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...
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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

Artificial noisy data on the sphere S2.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...
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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

Artificial diffusion data,
each pixel is a symmetric positive matrix.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...
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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

DT-MRI of the human brain.
Camino Profject: cmic.cs.ucl.ac.uk/camino

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...

http://cmic.cs.ucl.ac.uk/camino
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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

Grain orientations in EBSD data.
MTEX toolbox: mtex-toolbox.github.io

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...

https://mtex-toolbox.github.io
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Why Manifolds?

▶ A constrained problem on Rn ⇒ an unconstrained problem on M
▶ The “type of convexity” changes: Convexity is defined along geodesics γ

▶ If we can omit “working” in the embedding ⇒ dimension reduction
! we need efficient ways to compute e. g. retractions.
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The Smooth Case & Gradient Descent
For a smooth function f :M→ R we have
▶ The differential Df : TM→ R, or phrased differently Df(p) : TpM→ R
▶ the gradient grad f(p) ∈ TpM is the Riesz representer defined by the

property

Df(p)[X] = (grad f(p) , X)p, for all X ∈ TpM

⇒ Like in Rn: Y = − grad f(p) is the direction of steepest descent.

Algorithm. Gradient descent.
Given f and a retraction R we perform

pk+1 = Rpk(−sk grad f(p))

for some step size(s) sk – e. g. an Armijo backtracking line-search, cf. Ch. 4.1[Absil, Mahony, and Sepulchre 2008]
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Proximal Map

For f :M→ R and λ > 0 we define the Proximal Map as
[Moreau 1965; Rockafellar 1970; Ferreira and Oliveira 2002]

proxλf(p) := argmin
u∈M

dM(u, p)2 + λf(u).

! For a minimizer u∗ of f we have proxλf(u∗) = u∗.
▶ For f proper, convex, lsc:

▶ the proximal map is unique.
▶ Proximal-Point-Algorithm:

pk = proxλf(pk−1) converges to argmin f
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The Cyclic Proximal Point Algorithm

If we can split our nonsmooth f(p) =
c∑

i=1
gi(p), we can use the

Cyclic Proximal Point-Algorithmus (CPPA): [Bertsekas 2011; Bačák 2014]

pk+ i+1
c

= proxλkgi(pk+ i
c
), i = 0, . . . , c− 1, k = 0, 1, . . .

On a Hadamard manifold M:
convergence to a minimizer of f if
▶ all gi proper, convex, lower semi-continuous
▶ {λk}k∈N ∈ ℓ2(N)\ℓ1(N).
! no convergence rate
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The Exact Riemannian Chambolle–Pock Algorithm
[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021; Chambolle and Pock 2011]

Assume. f(p) = F(p) + G(Λ(p)), with Λ:M→N .

Input: m, p(0) ∈ C ⊂M, n = Λ(m), ξ(0)n ∈ T ∗nN , and parameters σ, τ, θ > 0
1: k← 0
2: p̄(0) ← p(0)
3: while not converged do
4: ξ

(k+1)
n ← proxτG∗n

(
ξ
(k)
n + τ

(
lognΛ(p̄(k))

)
♭
)

5: p(k+1) ← proxσF

(
expp(k)

(
Pp(k)←m

(
− σDΛ(m)∗[ξ

(k+1)
n ]

)
♯
))

6: p̄(k+1) ← expp(k+1)
(
−θ logp(k+1) p(k)

)
7: k← k + 1
8: end while

Output: p(k)
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Implementing Manifolds & Optimisation – in Julia.

▶ abstract definition of manifolds and properties thereon
e. g. different metrics, retractions, embeddings

⇒ implement abstract algorithms for generic manifolds
▶ easy to implement own manifolds & easy to use
▶ well-documented and well-tested
▶ fast.

Why Julia?
▶ high-level language, properly typed
▶ multiple dispatch (cf. f(x), f(x::Number), f(x::Int))
▶ just-in-time compilation, solves two-language problem
▶ I like the language – and the community.
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Implementing a Riemannian Manifold

ManifoldsBase.jl uses a AbstractManifold{F} with type parameter F ∈ {R,C,H}
to provide an interface for implementing functions like
▶ inner(M, p, X, Y) for the Riemannian metric (X , Y)p
▶ exp(M, p, X) and log(M, p, q),
▶ more general: retract(M, p, X, m), where m is a retraction method
▶ similarly: parallel_transport(M, p, X, q) and

vector_transport_to(M, p, X, q, m)

for your manifold M a subtype of the abstract manifold Manifold{F}.

mutating version exp!(M, q, p, X) works in place in q

basis for generic algorithms working on any Manifold and generic functions
like norm(M,p,X), geodesic(M, p, X) and shortest_geodesic(M, p, q)

juliamanifolds.github.io/ManifoldsBase.jl/

https://juliamanifolds.github.io/ManifoldsBase.jl/
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Manifolds.jl – A library of manifolds in Julia
[Axen, Baran, RB, and Rzecki 2021]Manifolds.jl is based on the ManifoldsBase.jl interface.

Features.
▶ different metrics
▶ Lie groups
▶ Build manifolds using

▶ Product manifold M1 ×M2
▶ Power manifold Mn×m

▶ Tangent bundle
▶ Embedded manifolds
▶ perform statistics
▶ well-documented, including

formulae and references
▶ well-tested, >98 % code cov.

Manifolds. For example
▶ (unit) Sphere, Circle & Torus
▶ Fixed Rank Matrices
▶ (Generalized) Stiefel & Grassmann
▶ Hyperbolic space
▶ Rotations, O(n), SO(n), SU(n)
▶ Several further Lie groups
▶ Symmetric positive definite matrices
▶ Symplectic & Symplectic Stiefel
▶ ...

juliamanifolds.github.io/Manifolds.jl/
JuliaCon 2020 youtu.be/md-FnDGCh9M

https://juliamanifolds.github.io/Manifolds.jl/
https://youtu.be/md-FnDGCh9M
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Manopt.jl: Optimisation on Manifolds in Julia
Goal. Provide optimisation algorithms on Riemannian manifolds,
based on ManifoldsBase.jl & works any manifold from Manifolds.jl.

Features.
▶ generic algorithm framework:

With Problem P and Options O
▶ initialize_solver!(P,O)
▶ step_solver!(P, O, i): ith step

run algorithm: call solve(P,O)

▶ generic debug and recording
▶ step sizes and stopping criteria.

Manopt Family.
manoptjl.org [RB 2022]

manopt.org [Boumal, Mishra, Absil, and Sepulchre 2014]

pymanopt.org [Townsend, Koep, and Weichwald 2016]

Algoirthms.
▶ Gradient Descent

CG, Stochastic, Momentum, ...
▶ Quasi-Newton

BFGS, DFP, Broyden, SR1, ...
▶ Nelder-Mead, Particle Swarm
▶ Subgradient Method
▶ Trust Regions
▶ Chambolle-Pock
▶ Douglas-Rachford
▶ Cyclic Proximal Point

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org
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