

Nonsmooth Optimization on Riemannian Manifolds in Manopt.jl

Ronny Bergmann

Optimization Research Seminar Heidelberg,

December 8, 2022

Overview

Task. We aim to solve

 $\operatorname*{arg\,min}_{p\in\mathcal{M}}\mathit{f}(p)$

where

- \blacktriangleright \mathcal{M} is a Riemannian manifold
- $f: \mathcal{M} \to \mathbb{R}$ is nonsmooth and possibly high-dimensional

Roadmap.

- 1. Motivation
- 2. Algorithms
- 3. Numerical examples in Manopt.jl

Intuition: Embedded Manifolds

Consider $h: \mathbb{R}^n \to \mathbb{R}^k$, $1 \le k \le n$ as an equality constraint h(p) = 0. If rank Dh(p) = k for all p with h(p) = 0, then

$$\mathcal{M} \coloneqq \left\{ p \in \mathbb{R}^n \, \middle| \, h(p) = 0 \right\}$$

is a (smooth embedded sub-)manifold of \mathbb{R}^n of dimension m = n - k, cf. Definition 3.10. [Bournal 2022]

Example. The Sphere $\mathbb{S}^m \subset \mathbb{R}^n$ has h(p) = ||p|| - 1 = 0 \Rightarrow We have k = 1 and m = n - 1.

Actually. It is enough to find such a function *h* locally around every *p*.

Intuition: Retractions – "Walking on Manifolds"

Interpretation. With rank Dh(p) = k we get dim ker Dh(p) = m = n - k \Rightarrow we have *m* "directions", where Dh(p)[X] = 0. We call the set of these "directions" the Tangent space $T_p\mathcal{M}$. The (disjoint) union of all tangent spaces is called the tangent bundle $T\mathcal{M}$.

Goal. We would like to "walk" into these directions while staying on the manifold.

Definition. A function $R: T\mathcal{M} \to \mathcal{M}$, also denoted by $R_p: T_p\mathcal{M} \to \mathcal{M}$ for each $p \in \mathcal{M}$, is called a retraction if each curve $c(t) = R_p(tX)$ satisfies c(0) = p and c'(0) = X.

A Riemannian Manifold ${\cal M}$

A *d*-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a 'suitable' collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^d and a continuously varying inner product on the tangent spaces. [Absil, Mahony, and Sepulchre 2008]

Notation.

- Logarithmic map $\log_p q = \dot{\gamma}(0; p, q)$
- Exponential map $\exp_p X = \gamma_{p,X}(1)$
- Geodesic $\gamma(\cdot; p, q)$
- ▶ Tangent space T_pM
- ▶ inner product $(\cdot, \cdot)_p$

Tasks in image processing are often phrased as an optimisation problem. **Here.** The pixel take values on a manifold

- ▶ phase-valued data (S¹)
- ▶ wind-fields, GPS (S²)
- ▶ DT-MRI (*P*(3))
- EBSD, (grain) orientations (SO(n))

Artificial noisy phase-valued data.

Tasks in image processing are often phrased as an optimisation problem. **Here.** The pixel take values on a manifold

- ▶ phase-valued data (S¹)
- ▶ wind-fields, GPS (S²)
- ▶ DT-MRI (*P*(3))
- EBSD, (grain) orientations (SO(n))

InSAR-Data of Mt. Vesuvius. [Rocca, Prati, and Guarnieri 1997]

Tasks in image processing are often phrased as an optimisation problem. **Here.** The pixel take values on a manifold

- ▶ phase-valued data (S¹)
- ▶ wind-fields, GPS (S²)
- ▶ DT-MRI (*P*(3))
- EBSD, (grain) orientations (SO(n))

Artificial noisy data on the sphere $\mathbb{S}^2.$

Tasks in image processing are often phrased as an optimisation problem. **Here.** The pixel take values on a manifold

- ▶ phase-valued data (S^1)
- ▶ wind-fields, GPS (S²)
- ▶ DT-MRI (*P*(3))
- EBSD, (grain) orientations (SO(n))

Artificial diffusion data, each pixel is a symmetric positive matrix.

Tasks in image processing are often phrased as an optimisation problem. **Here.** The pixel take values on a manifold

- ▶ phase-valued data (S^1)
- ▶ wind-fields, GPS (S²)
- ▶ DT-MRI (*P*(3))
- EBSD, (grain) orientations (SO(n))

DT-MRI of the human brain. Camino Profject: cmic.cs.ucl.ac.uk/camino

Tasks in image processing are often phrased as an optimisation problem. **Here.** The pixel take values on a manifold

- ▶ phase-valued data (S¹)
- ▶ wind-fields, GPS (S²)
- ▶ DT-MRI (*P*(3))
- ▶ EBSD, (grain) orientations (SO(*n*))

Grain orientations in EBSD data. MTEX toolbox: mtex-toolbox.github.io

Why Manifolds?

- ▶ A constrained problem on $\mathbb{R}^n \Rightarrow$ an unconstrained problem on \mathcal{M}
- \blacktriangleright The "type of convexity" changes: Convexity is defined along geodesics γ
- \blacktriangleright If we can omit "working" in the embedding \Rightarrow dimension reduction
- ! we need efficient ways to compute e.g. retractions.

The Smooth Case & Gradient Descent

For a smooth function $f: \mathcal{M} \to \mathbb{R}$ we have

- ▶ The differential $Df: T\mathcal{M} \to \mathbb{R}$, or phrased differently $Df(p): T_p\mathcal{M} \to \mathbb{R}$
- ► the gradient grad f(p) ∈ T_pM is the Riesz representer defined by the property

$$Df(p)[X] = (ext{grad} f(p), X)_p, \quad \text{for all } X \in T_p\mathcal{M}$$

 \Rightarrow Like in \mathbb{R}^n : $Y = - \operatorname{grad} f(p)$ is the direction of steepest descent.

Algorithm. Gradient descent. Given f and a retraction R we perform

$$p_{k+1} = R_{p_k}(-s_k \operatorname{grad} f(p))$$

for some step size(s) s_k – e.g. an Armijo backtracking line see another step size(s) s_k – e.g. an Armijo backtracking line see another step size(s) s_k – e.g. an Armijo backtracking line see another step size(s) s_k – e.g. an Armijo backtracking line see another step size(s) s_k – e.g. an Armijo backtracking line see another step size(s) s_k – e.g. an Armijo backtracking line see another step size(s) s_k – e.g. an Armijo backtracking line see another step size(s) s_k – e.g. an Armijo backtracking line see another step size(s) s_k – e.g. an Armijo backtracking line see another step size(s) s_k – e.g. an Armijo backtracking line see another step size(s) s_k – e.g. an Armijo backtracking line see another step size(s) s_k – e.g. an Armijo backtracking line see another step size(s) s_k – e.g. an Armijo backtracking line see another step size(s) s_k – e.g. and see another step size(s) s_k – e.g. another step siz

Proximal Map

For $f: \mathcal{M} \to \overline{\mathbb{R}}$ and $\lambda > 0$ we define the Proximal Map as [Moreau 1965; Rockafellar 1970; Ferreira and Oliveira 2002]

$$\operatorname{prox}_{\lambda f}(p) \coloneqq \operatorname*{arg\,min}_{u \in \mathcal{M}} d_{\mathcal{M}}(u, p)^2 + \lambda f(u).$$

- ! For a minimizer u^* of f we have $\operatorname{prox}_{\lambda f}(u^*) = u^*$.
- For *f* proper, convex, lsc:
 - the proximal map is unique.
 - Proximal-Point-Algorithm:
 - $p_k = \operatorname{prox}_{\lambda f}(p_{k-1})$ converges to arg min f

The Cyclic Proximal Point Algorithm

If we can split our nonsmooth $f(p) = \sum_{i=1}^{c} g_i(p)$, we can use the Cyclic Proximal Point-Algorithmus (CPPA):

[Bertsekas 2011; Bačák 2014]

$$p_{k+rac{i+1}{c}} = \operatorname{prox}_{\lambda_k g_i}(p_{k+rac{i}{c}}), \quad i = 0, \dots, c-1, \ k = 0, 1, \dots$$

On a Hadamard manifold \mathcal{M} : convergence to a minimizer of *f* if

- all g_i proper, convex, lower semi-continuous
- $\blacktriangleright \{\lambda_k\}_{k\in\mathbb{N}} \in \ell_2(\mathbb{N}) \setminus \ell_1(\mathbb{N}).$
 - ! no convergence rate

NTNU

The Exact Riemannian Chambolle–Pock Algorithm

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021; Chambolle and Pock 2011]

Assume. $f(p) = F(p) + G(\Lambda(p))$, with $\Lambda : \mathcal{M} \to \mathcal{N}$.

Input: $m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n = \Lambda(m), \xi_n^{(0)} \in \mathcal{T}_n^* \mathcal{N}$, and parameters $\sigma, \tau, \theta > 0$ 1: $k \leftarrow 0$ 2: $\bar{p}^{(0)} \leftarrow p^{(0)}$ 3: while not converged do 4: $\xi_{p}^{(k+1)} \leftarrow \operatorname{prox}_{\tau G^{*}} \left(\xi_{p}^{(k)} + \tau \left(\log_{p} \Lambda(\bar{p}^{(k)}) \right)^{\flat} \right)$ 5: $p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F} \left(\exp_{p^{(k)}} \left(\mathsf{P}_{p^{(k)} \leftarrow m} \left(-\sigma D \Lambda(m)^* [\xi_n^{(k+1)}] \right)^{\sharp} \right) \right)$ 6: $\overline{p}^{(k+1)} \leftarrow \exp_{p^{(k+1)}} \left(-\theta \log_{p^{(k+1)}} p^{(k)}\right)$ 7. $k \leftarrow k+1$ 8: end while

Output: $p^{(k)}$

Implementing Manifolds & Optimisation – in Julia.

- abstract definition of manifolds and properties thereon
 e. g. different metrics, retractions, embeddings
- \Rightarrow implement abstract algorithms for generic manifolds
- easy to implement own manifolds & easy to use
- well-documented and well-tested
- ► fast.

Why 💑 Julia?

- high-level language, properly typed
- multiple dispatch (cf. f(x), f(x::Number), f(x::Int))
- just-in-time compilation, solves two-language problem
- ▶ I like the language and the community.

NTNU

D NTNU

Implementing a Riemannian Manifold

 $\begin{array}{l} \texttt{ManifoldsBase.jl uses a AbstractManifold} \ensuremath{\mathbb{F}} \ensuremath{\mathbb{F}} \ensuremath{\mathbb{F}} \ensuremath{\mathbb{F}} \ensuremath{\mathbb{C}}, \ensuremath{\mathbb{H}} \ensuremath{\mathbb{H}} \ensuremath{\mathbb{F}} \ensuremath{\mathbb{F}} \ensuremath{\mathbb{C}}, \ensuremath{\mathbb{H}} \ensuremath{\mathbb{H}} \ensuremath{\mathbb{F}} \ensuremath{\mathbb{C}}, \ensuremath{\mathbb{H}} \ensuremath{\mathbb{H}} \ensuremath{\mathbb{H}} \ensuremath{\mathbb{E}} \ensuremath{\mathbb{H}} \ensuremath{$

- inner(M, p, X, Y) for the Riemannian metric $(X, Y)_p$
- exp(M, p, X) and log(M, p, q),
- ▶ more general: retract(M, p, X, m), where m is a retraction method
- similarly: parallel_transport(M, p, X, q) and

vector_transport_to(M, p, X, q, m)

for your manifold M a subtype of the abstract manifold $Manifold{\mathbb{F}}$.

 \bigcirc mutating version exp!(M, q, p, X) works in place in q

M basis for generic algorithms working on any Manifold and generic functions like norm(M,p,X), geodesic(M, p, X) and shortest_geodesic(M, p, q)

 ${\cal O}$ juliamanifolds.github.io/ManifoldsBase.jl/

Manifolds.il – A library of manifolds in Julia

Manifolds.jl is based on the ManifoldsBase.jl interface. Features.

- different metrics
- Lie groups
- Build manifolds using
 - **Product manifold** $\mathcal{M}_1 \times \mathcal{M}_2$
 - **Power manifold** $\mathcal{M}^{n \times m}$
 - Tangent bundle
- Embedded manifolds
- perform statistics
- ▶ well-documented, including formulae and references
- ▶ well-tested. >98 % code cov.

- Manifolds. For example
 - (unit) Sphere, Circle & Torus
 - Fixed Rank Matrices
 - (Generalized) Stiefel & Grassmann

[Axen, Baran, RB, and Rzecki 2021]

Hyperbolic space

....

- **•** Rotations, O(n), SO(n), SU(n)
- Several further Lie groups
- Symmetric positive definite matrices
- Symplectic & Symplectic Stiefel
- \mathscr{O} iuliamanifolds.github.io/Manifolds.jl/ JuliaCon 2020 youtu.be/md-FnDGCh9M

Manopt.jl: Optimisation on Manifolds in Julia

Goal. Provide optimisation algorithms on Riemannian manifolds, based on ManifoldsBase.jl & works any manifold from Manifolds.jl.

Features.

- generic algorithm framework: With Problem P and Options 0
 - initialize_solver!(P,0)
 - step_solver!(P, 0, i): ith step
- O run algorithm: call solve(P,0)
- generic debug and recording
- step sizes and stopping criteria.

Manopt Family.

Algoirthms.

- Gradient Descent
 CG, Stochastic, Momentum, ...
- Quasi-Newton
 BFGS, DFP, Broyden, SR1, ...
- Nelder-Mead, Particle Swarm
- Subgradient Method
- Trust Regions
- Chambolle-Pock
- Douglas-Rachford
- Cyclic Proximal Point

D NTNU

Selected References

- Axen, S. D., M. Baran, RB, and K. Rzecki (2021). Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds. arXiv: 2106.08777.
- Bačák, M. (2014). "Computing medians and means in Hadamard spaces". In: SIAM Journal on Optimization 24.3, pp. 1542–1566. DOI: 10.1137/140953393.
- RB (2022). "Manopt.jl: Optimization on Manifolds in Julia". In: Journal of Open Source Software 7.70, p. 3866. DOI: 10.21105/joss.03866.
- RB, R. Herzog, M. Silva Louzeiro, D. Tenbrinck, and J. Vidal-Núñez (Jan. 2021). "Fenchel duality theory and a primal-dual algorithm on Riemannian manifolds". In: Foundations of Computational Mathematics. DOI: 10.1007/s10208-020-09486-5. arXiv: 1908.02022.
- Boumal, N., B. Mishra, P.-A. Absil, and R. Sepulchre (2014). "Manopt, a Matlab toolbox for optimization on manifolds". In: *The Journal of Machine Learning Research* 15, pp. 1455–1459. URL: https://www.jmlr.org/papers/v15/boumal14a.html.
- Boumal, N. (June 2022). An introduction to optimization on smooth manifolds. To appear with Cambridge University Press. URL: https://www.nicolasboumal.net/book.
- Chambolle, A. and T. Pock (2011). "A first-order primal-dual algorithm for convex problems with applications to imaging". In: *Journal of Mathematical Imaging and Vision* 40.1, pp. 120–145. DOI: 10.1007/s10851-010-0251-1.
- Townsend, J., N. Koep, and S. Weichwald (2016). "Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation". In: Journal of Machine Learning Research 17.137, pp. 1–5. URL: http://jmlr.org/papers/v17/16-177.html.

ronnybergmann.net/talks/2022-Heidelberg-NonSmooth-Optim.pdf