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The Model

We consider a minimization problem

argmin
p∈C

F(p) + G(Λ(p))

▶ M,N are (high-dimensional) Riemannian Manifolds
▶ F :M→ R nonsmooth, (locally, geodesically) convex
▶ G : N → R nonsmooth, (locally) convex
▶ Λ:M→N nonlinear
▶ C ⊂M strongly geodesically convex.

In image processing:
choose a model, such that finding a minimizer yields the reconstruction
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Splitting Methods & Algorithms

On a Riemannian manifold M we have
▶ Cyclic Proximal Point Algorithm (CPPA) [Bačák 2014]

▶ (parallel) Douglas–Rachford Algorithm (PDRA) [RB, Persch, and Steidl 2016]

On Rn PDRA is known to be equivalent to [O’Connor and Vandenberghe 2018; Setzer 2011]

▶ Primal-Dual Hybrid Gradient Algorithm (PDHGA) [Esser, Zhang, and Chan 2010]

▶ Chambolle-Pock Algorithm (CPA) [Chambolle and Pock 2011; Pock, Cremers, Bischof, and Chambolle 2009]

But on a Riemannian manifold M: no duality theory!

Goals of this talk.
Formulate Duality on a Manifold
Derive a Riemannian Chambolle–Pock Algorithm (RCPA)
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A d-dimensional Riemannian manifold M

γ(·; p , q)p q

expp
logp

X
logp p

TpM

M

Y
Pq←pY

Geodesic γ(·; p , q)
a shortest path between p, q ∈M

Tangent space TpM at p
with inner product (· , ·)p

Logarithmic map logp q = γ̇(0; p, q)
“speed towards q”

Exponential map expp X = γp,X(1) ,
where γp,X(0) = p and γ̇p,X(0) = X

Parallel transport Pq←pY
from TpM along γ(·; p , q) to TqM

A d-dimensional Riemannian manifold can be informally defined as a set M covered
with a ‘suitable’ collection of charts, that identify subsets of M with open subsets of

Rd and a continuously varying inner product on the tangent spaces.
[Absil, Mahony, and Sepulchre 2008]
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Musical Isomorphisms

[Lee 2003]

The dual space T ∗pM of a tangent space TpM is called cotangent space.
We denote by 〈· , ·〉 the duality pairing.

We define the musical isomorphisms
▶ ♭ : TpM3 X 7→ X♭ ∈ T ∗pM via 〈X♭ ,Y〉 = (X , Y)p for all Y ∈ TpM
▶ ♯ : T ∗pM3 ξ 7→ ξ♯ ∈ TpM via (ξ♯ , Y)p = 〈ξ ,Y〉 for all Y ∈ TpM.
⇒ inner product and parallel transport on/between T ∗pM
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Convexity

[Sakai 1996; Udrişte 1994]

A set C ⊂M is called (strongly geodesically) convex
if for all p, q ∈ C the geodesic γ(·; p , q) is unique and lies in C.

A function F : C → R is called (geodesically) convex
if for all p, q ∈ C the composition F(γ(t; p , q)), t ∈ [0, 1], is convex.
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The Euclidean Fenchel Conjugate

Let f : Rn → R be proper and convex.
We define the Fenchel conjugate f∗ : Rn → R of f by

f∗(ξ) := sup
x∈Rn
〈ξ, x〉 − f(x) = sup

x∈Rn

(
ξ
−1

)T( x
f(x)

)

▶ interpretation: maximize the distance of ξTx to f
⇒ extremum seeking problem on the epigraph

The Fenchel biconjugate reads

f∗∗(x) = (f∗)∗(x) = sup
ξ∈Rn
{〈ξ , x〉 − f∗(ξ)}.
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Illustration of the Fenchel Conjugate
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The Riemannian m−Fenchel Conjugate
[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

alternative approach: [Ahmadi Kakavandi and Amini 2010]

Idea: Introduce a point on M to “act as” 0.
Let m ∈ C ⊂M be given and F : C → R.
The m-Fenchel conjugate F∗m : T ∗mM→ R is defined by

F∗m(ξm) := sup
X∈LC,m

{
〈ξm ,X〉 − F(expm X)

}
,

where LC,m := {X ∈ TmM | q = expm X ∈ C and ‖X‖p = d(q, p)}.

Let m′ ∈ C.
The mm′-Fenchel-biconjugate F∗∗mm′ : C → R is given by

F∗∗mm′(p) = sup
ξm′∈T ∗

m′M

{
〈ξm′ , logm′ p〉 − F∗m(Pm←m′ξm′)

}
.

usually we only use the case m = m′.
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Saddle Point Formulation

Let F be geodesically convex, G ◦ expn be convex (on TnN ).

From
min
p∈C

F(p) + G(Λ(p))

we derive the saddle point formulation for the n-Fenchel conjugate of G as

min
p∈C

max
ξn∈T ∗nN

〈ξn , logn Λ(p)〉+ F(p)− G∗n(ξn).

But Λ:M→N is a non-linear operator!

For Optimality Conditions and the Dual Prolem: What’s Λ∗?
Approach. Linearization: [Valkonen 2014]

Λ(p) ≈ expΛ(m) DΛ(m)[logm p]
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The exact Riemannian Chambolle–Pock Algorithm (eRCPA)

Input: m, p(0) ∈ C ⊂M, n = Λ(m), ξ(0)n ∈ T ∗nN ,
and parameters σ, τ, θ > 0

1: k← 0
2: p̄(0) ← p(0)
3: while not converged do
4: ξ

(k+1)
n ← proxτG∗n

ξ
(k)
n + τ

(
logn Λ(p̄(k))

)
♭

5: p(k+1) ← proxσFexpp(k)

(
Pm←p(k)

(
− σDΛ(m)∗[ξ

(k+1)
n ]

)
♯
)

6: p̄(k+1) ← expp(k+1)
(
−θ logp(k+1) p(k)

)
7: k← k + 1
8: end while

Output: p(k)

11



Generalizations & Variants of the RCPA
Classically

[Chambolle and Pock 2011]

▶ change σ = σk, τ = τk, θ = θk during the iterations
▶ introduce an acceleration γ

▶ relax dual ξ̄ instead of primal p̄ (switches lines 4 and 5)
Furthermore we

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

▶ introduce the lRCPA: linearize Λ, i. e., adopt the Euclidean case from [Valkonen 2014]

logn Λ(p̄(k)) → Pn←Λ(m)DΛ(m)[logm p̄(k)]
▶ choose n 6= Λ(m) introduces a parallel transport

DΛ(m)∗[ξ
(k+1)
n ] → DΛ(m)∗[PΛ(m)←nξ

(k+1)
n ]

▶ change m = m(k), n = n(k) during the iterations
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The Linearized RCPA with Dual Relaxation

We introduce for ease of notation

p̃(k) = expp(k)

(
Pp(k)←m−

(
σ(DΛ(m))∗[ξ̄

(k)
n ]

)♯)
for the linearized Riemannian Chambolle Pock
with dual relaxed

ξ̄
(k)
n ← ξ

(k)
n + θ(ξ

(k)
n − ξ

(k−1)
n ).

Especially for θ = 1 we obtain

ξ̄
(k)
n = 2ξ(k)n − ξ

(k−1)
n .
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A Conjecture

We define
C(k) := 1

σ
d2(p(k), p̃(k)) + 〈ξ̄(k)n ,DΛ(m)[ζk]〉,

where

ζk = Pm←p(k)
(
logp(k) p(k+1) − Pp(k)←p̃(k) logp̃(k) p̂

)
− logm p(k+1) + logm p̂,

and p̂ is a minimizer of the primal problem.
Remark.
For M = Rd: ζk = p̃(k) − p(k) = −σ(DΛ(m))∗[ξ̄

(k)
n ]⇒ C(k) = 0.

Conjecture.
Assume στ < ‖DΛ(m)‖2. Then C(k) ≥ 0 for all k > K, K ∈ N.
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Convergence of the lRCPA

Theorem. [RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

Let M, N be Hadamard. Assume that the linearized problem

min
p∈M

max
ξn∈T ∗nN

〈(DΛ(m))∗[ξn] , logm p〉+ F(p)− G∗n(ξn).

has a saddle point (p̂, ξ̂n).
Choose σ, τ such that

στ < ‖DΛ(m)‖2

and assume that C(k) ≥ 0 for all k > K. Then it holds
1. the sequence (p(k), ξ(k)n ) remains bounded,
2. there exists a saddle-point (p′, ξ′n) such that p(k) → p′ and ξ

(k)
n → ξ′n.
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The ℓ2-TV Model
[Rudin, Osher, and Fatemi 1992; Lellmann, Strekalovskiy, Koetter, and Cremers 2013; Weinmann, Demaret, and Storath 2014]

For a manifold-valued image f ∈M, M = N d1, d2 , we compute

argmin
p∈M

1
α

F(p) + G(Λ(p)), α > 0,

with
▶ data term F(p) = 1

2d2
M(p, f)

▶ “forward differences” Λ:M→ (TM)d1−1, d2−1, 2,

p 7→ Λ(p) =
(
(logpi pi+e1 , logpi pi+e2)

)
i∈{1,...,d1−1}×{1,...,d2−1}

▶ prior G(X) = ‖X‖g,q,1 similar to a collaborative TV [Duran, Moeller, Sbert, and Cremers 2016]
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Numerical Example for a P(3)-valued Image

P(3)-valued data. anisotropic TV, α = 6.
▶ in each pixel we have a symmetric positive definite matrix
▶ Applications: denoising/inpainting e.g. of DT-MRI data
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Numerical Example for a P(3)-valued Image

1 10 100 1,000
40

60

80

Iterations

Co
st

38.74
CPPA
PDRA
lRCPA

Approach. CPPA as benchmark
CPPA PDRA lRCPA

parameters λk = 4
k η = 0.58 σ = τ = 0.4

λ = 0.93 γ = 0.2, m = I
iterations 4000 122 113
runtime 1235 s. 380 s. 96.1 s.
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Base point Effect on S2-valued data

Original data Original data

▶ pieceweise constant result

s for both

! different linearizations lead to different models
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Base point Effect on S2-valued data

Result, m the mean (p. Px.) Result, m west (p. Px.)
▶ pieceweise constant results for both
! different linearizations lead to different models
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Base point Effect on S2-valued data

Result, m the mean (p. Px.) Result, m west (p. Px.)
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Summary & Outlook

Summary.
▶ We introduced a duality framework on Riemannian manifolds
▶ We derived a Riemannian Chambolle–Pock Algorithm
▶ Numerical examples illustrate performance

Outlook.
▶ investigate C(k) and the error of linearization
▶ strategies for choosing m, n (adaptively)
▶ alternative models of Fenchel duality (e. g. without m) [RB, Herzog, and Silva Louzeiro 2021]

Thu @ 11:00 BST (18:00 CEST) in MS Optimization and Manifolds
▶ higher order methods non-smooth methods [Diepeveen and Lellmann 2021]

W. Diepeveen, Thu @ 11:30 BST (18:30 CEST) in MS Optimization and Manifolds
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Reproducible Research

The algorithm is published in Manopt.jl, a Julia Package available at
http://manoptjl.org.

It uses the interface from ManifoldsBase.jl and
any manifold from Manifolds.jl can be used in the algorithms.

https://juliamanifolds.github.io/Manifolds.jl/
[Axen, Baran, RB, and Rzecki 2021]

Goal.
Being able to use an(y) algorithm for a(ny) model directly on a(ny)

manifold easily and efficiently.

Alternatives.
▶ Manopt, manopt.org (Matlab, by N. Boumal)
▶ pymanopt, pymanopt.github.io (Python, by S. Weichwald, J. Townsend, N. Koep)
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