Manifolds in Julia

Manifolds.jl and ManifoldsBase.jl

Seth Axen^a, Mateusz Baran^{b,c}, Ronny Bergmann^d

^aUniversity of California, San Francisco, USA

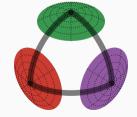
^bAGH University of Science and Technology, Kraków, Poland

^cCracow University of Technology, Kraków, Poland

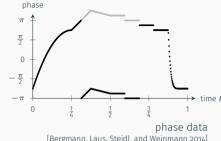
^dTechnische Universität Chemnitz, Chemnitz, Germany

juliacon 2020

Lisbon, Portugal, July 27–31, 2020



- · cyclic data (phase, e.g. InSAR)
- spherical data (earth, directions)
- orientations
- diffusion tensors
- non-linear spaces © Riemannian manifolds \odot

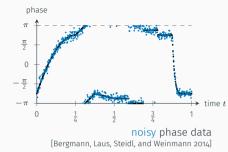


[Bergmann, Laus, Steidl, and Weinmann 2014]

Transferring properties, we provide methods for those data

- statistics
- · data processing, e.g. imaging
- optimization
- ...
- Implement methods generically for any manifold
- Make it easy to specialize methods using multiple dispatch

- · cyclic data (phase, e.g. InSAR)
- spherical data (earth, directions)
- orientations
- · diffusion tensors

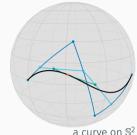


Transferring properties, we provide methods for those data

- statistics
- · data processing, e.g. imaging
- optimization
- ...
- Implement methods generically for any manifold
- Make it easy to specialize methods using multiple dispatch

1

- · cyclic data (phase, e.g. InSAR)
- spherical data (earth, directions)
- orientations
- diffusion tensors
- non-linear spaces ☺ Riemannian manifolds



a curve on S² [Bergmann and Gousenbourger 2018]

Transferring properties, we provide methods for those data

- statistics
- · data processing, e.g. imaging
- optimization
- ٠ ..
- Implement methods generically for any manifold
- Make it easy to specialize methods using multiple dispatch

- · cyclic data (phase, e.g. InSAR)
- spherical data (earth, directions)
- orientations
- diffusion tensors

Euler angles for orientations W File:Euler.png

Transferring properties, we provide methods for those data

- statistics
- · data processing, e.g. imaging
- optimization
- ٠ ..
- Implement methods generically for any manifold
- ™ Make it easy to specialize methods using multiple dispatch

1

- · cyclic data (phase, e.g. InSAR)
- spherical data (earth, directions)
- orientations
- diffusion tensors

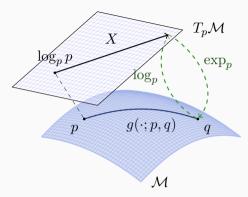
Diffusion tensors from DT-MRI

data: Camino project

Transferring properties, we provide methods for those data

- statistics
- · data processing, e.g. imaging
- optimization
- ...
- Implement methods generically for any manifold
- Make it easy to specialize methods using multiple dispatch

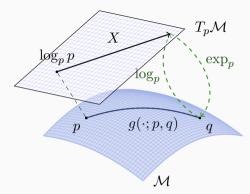
Background: A Riemannian manifold



A d-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a 'suitable' collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^d and a continuously varying inner product on the tangential spaces.

[Absil, Mahony, and Sepulchre 2008]

Background: A Riemannian manifold



Geodesic $g(\cdot; p, q)$ shortest path (on \mathcal{M}) between $p, q \in \mathcal{M}$ **Tangent space** $\mathrm{T}_p \mathcal{M}$ at p, with inner product $\langle \cdot, \cdot \rangle_p$ **Logarithmic map** $\log_p q = \dot{g}(0; p, q)$ "speed towards q" **Exponential map** $\exp_p X = g(1)$, where g(0) = p, $\dot{g}(0) = X$

In Manifolds.jl a manifold is a subtype of Manifold $\{\mathbb{F}\}$, $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$, that implements functions from ManifoldsBase.jl like

- inner(M, p, X, Y) for angles between tangent vectors,
- exp(M, p, X) and log(M, p, q),
- more general: retract(M, p, X, m), where m is a retraction method
- moving tangents: vector_transport_to(M, p, X, q, t),
 where t is a transport method
- mutating version exp!(M, q, p, X) works in place in q
- → interface allows for generic algorithms for any Manifold:

norm(M,p,X), geodesic(M, p, X) and $shortest_geodesic(M, p, q)$ are available with the above implemented.

Properties are often implicitly given, like the Riemannian metric tensor.

The interface provides a decorator manifold acting semi-transparently, i.e. transparent for all functions specified not to be affected by this decorator.

Example.

ValidationManifold(M) performs (when applicable)

- is_manifold_point(M, p)
- is_tangent_vector(M, p, X)

before and after every basic function from the interface (exp, log, inner,...).

Goal. Implement different Riemannian metric tensors for a manifold.

- → transparent e.g. for manifold_dimension(M)
 - existing implementation: default metric (transparent)
 - · other functions: implementation using parametric type

Example.

- M = SymmetricPositiveDefinite(3) has
- MetricManifold(M, LinearAffineMetric) as synonym,
- MetricManifold(M, LogEuclidean) is a second metric,
- MetricManifold(M, LogCholesky) is a metric providing an exp.
- exp defaults to a method numerically solving the ODE.

Goal. Model embedded manifold(s) of a manifold

- reuse functions (like inner) from embedding.
 - different types via AbstractEmbeddingType T
 - provide embed, project & get_embedding

Examples.

- Sphere{N, \mathbb{F} } <: AbstractEmbeddedManifold $\{\mathbb{F},\ DefaultIsometricEmbeddingType\}$ into Euclidean(N+1), \odot its inner is used
- SymmetricMatrices{N, \mathbb{F} } <: AbstractEmbeddedManifold $\{\mathbb{F}, \text{ TransparentIsometricEmbedding}\}$ into Euclidean(N, N; field= \mathbb{F}), use its exp & log
- or use directly EmbeddedManifold(Manifold, Embedding)

Goal. Model manifolds that have a group structure

- a manifold with a smooth binary operator o, e.g. translation, multiplication, composition
- · an identity element
- together with MetricManifold: left-, right- & bi-invariant metric

Examples.

- TranslationGroup(n) is \mathbb{R}^n with translation action
- SpecialOrthogonal{n} <:</pre>

```
GroupManifold{Rotations{n}, MultiplicationOperation}
```

- SpecialEuclidean(n) is a SemidirectProductGroup
- or directly GroupManifold(Manifold, Operation)

Build more manifolds

Given Riemannian manifolds $\mathcal{M}, \mathcal{M}_1, \ldots, \mathcal{M}_N$ you can build

- the ProductManifold: $\mathcal{N}=\mathcal{M}_1\times\cdots\times\mathcal{M}_N$ points are tuples $p=(p_1,\ldots,p_N)$, where $p_i\in\mathcal{M}_i$ **Example.** N = ProductManifold(M1, M2) or N = M1×M2 the PowerManifold: $\mathcal{N}=\mathcal{M}^{n_1\times n_2}$
 - points are (nested) arrays $p=(p_{i,j})_{i,j=1}^{n_1,n_2}$, where $p_{i,j}\in\mathcal{M}$ **Example.** N = PowerManifold(M, 5, 6) or N = M^(5, 6)
- the TangentBundle: $\mathcal{N}=T\mathcal{M}=\bigcup_{p\in\mathcal{M}}T_p\mathcal{M}$ points are tuples p=(q,X), where $X\in T_q\mathcal{M}$ **Example.** N = TangentBundle(M) or more generally VectorBundleFibers
- easy access/modification: p[N, i]

Statistics

The mean
$$\frac{1}{n}\sum_{k=1}^{n}x_{i}$$
 can be phrased

as
$$\underset{y}{\arg\min} \sum_{i=1}^{n} ||x_i - y||_2^2$$

- © replace norm of difference by distance
- $oldsymbol{\Theta}$ no closed form but a smooth optimization problem.
 - mean(M, x[, weights, method]) to compute the (weighted) mean, where method is a gradient descent, geodesic interpolation or an extrinsic estimator
 - · var(M, x, weights, m=mean(M, x, w)) variance of the data (in $T_m\mathcal{M}$)
 - · similarly available std, kurtosis, skewness, moment

A median is given by any
$$\underset{y}{\arg\min} \sum_{i=1}^{n} d_{\mathcal{M}}(x_i,y)$$

- $oldsymbol{\Theta}$ nonsmooth optimization problem on ${\mathcal M}$
- → method: CyclicProximalPointEstimation

[Bačák 2014]

Statistics

The mean $\frac{1}{n}\sum_{k=1}^n x_i$ can be phrased on a manifold as $\arg\min_y \sum_{i=1}^n d_{\mathcal{M}}(x_i,y)^2$

- ☺ replace norm of difference by distance
- $oldsymbol{\Theta}$ no closed form but a smooth optimization problem.
 - mean(M, x[, weights, method]) to compute the (weighted) mean, where method is a gradient descent, geodesic interpolation or an extrinsic estimator
 - · var(M, x, weights, m=mean(M, x, w)) variance of the data (in $T_m\mathcal{M}$)
 - · similarly available std, kurtosis, skewness, moment

A median is given by any $\underset{y}{\operatorname{arg\,min}} \sum_{i=1}^{n} d_{\mathcal{M}}(x_{i},y)$

- $oldsymbol{\Theta}$ nonsmooth optimization problem on ${\mathcal M}$
- → method: CyclicProximalPointEstimation

[Bačák 2014]

Bases in tangent spaces

A tangent vector $X \in T_p \mathcal{M}$ is often neither a vector nor of dimension $\dim_{\mathcal{M}}$.

- ⊕ use an AbstractBasis for tangent spaces, e.g.
 - DefaultBasis for any basis
 - · DefaultOrthogonalBasis, DefaultOrthonormalBasis W.r.t. $\langle\cdot,\cdot
 angle_p$
 - ProjectedOrthonormalBasis from the embedding
 - DiagonalizingOrthonormalBasis diagonalizes the curvature tensor
- © do not store the basis explicitly, but provide an iterator.
- \odot to store them explicitly use get_basis(M, p, basis) to get a CachedBasis.

```
Then use coords = get_coordinates(M, p, X, basis) and its inverse X = get_vector(M, p, coords, basis)
```

Available basic manifolds

Currently the following manifolds are available

- Centered matrices*
- · Cholesky space
- Circle*
- Fuclidean*,†,‡
- Fixed-rank matrices*
- Generalized Stiefel*
- Generalized Grassmann*

- Grassmann*
- Hyperbolic space
- Lorentzian Manifold
- Multinomial matrices
- Oblique manifold*
- Probability simplex
- Rotations

- Skew-symmetric matrices*
- · (Array) Sphere*
- Symmetric matrices*
- Symmetric positive definite
- Torus
- Unit-norm symmetric matrices*

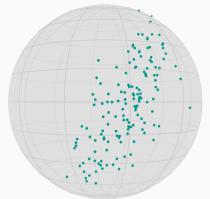
^{*}also available as complex-valued manifold.

[†]also available as quaternion-valued manifold.

[‡]can also be used for numbers, vectors, matrices, tensors,...

 Ξ Compute a principal component analysis (PCA) for a Vector pts of points on \mathbb{S}^2 by computing a PCA in the tangent space of the mean m.

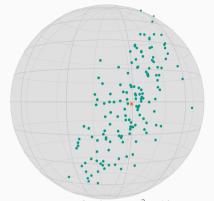
```
using Manifolds, MultivariateStats
M = Sphere(2)
```



a set of points on \mathbb{S}^2

 Ξ Compute a principal component analysis (PCA) for a Vector pts of points on \mathbb{S}^2 by computing a PCA in the tangent space of the mean m.

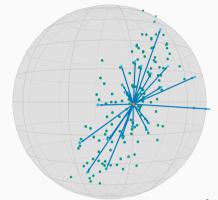
```
using Manifolds, MultivariateStats
M = Sphere(2)
m = mean(M, pts)
```



a set of points on $\mathbb{S}^2 \text{and its } \underline{\text{mean}}$

 Ξ Compute a principal component analysis (PCA) for a Vector pts of points on \mathbb{S}^2 by computing a PCA in the tangent space of the mean m.

```
using Manifolds, MultivariateStats
M = Sphere(2)
m = mean(M, pts)
logs = log.(Ref(M), Ref(m), pts)
```



logarithmic maps of the points into $T_m\mathbb{S}^2$

 \cong Compute a principal component analysis (PCA) for a Vector pts of points on \mathbb{S}^2 by computing a PCA in the tangent space of the mean m.

```
using Manifolds, MultivariateStats
M = Sphere(2)
m = mean(M, pts)
logs = log.(Ref(M), Ref(m), pts)
basis = DefaultOrthonormalBasis()
coords = map(X -> get_coordinates(M, m, X, basis), logs)
coords red = reduce(hcat, coords)
```

 \cong Compute a principal component analysis (PCA) for a Vector pts of points on \mathbb{S}^2 by computing a PCA in the tangent space of the mean m.

```
using Manifolds, MultivariateStats
M = Sphere(2)
m = mean(M, pts)
logs = log.(Ref(M), Ref(m), pts)
basis = DefaultOrthonormalBasis()
                                                     PCA as a tangent vector X (scaled by \frac{1}{2})
coords = map(X -> get coordinates(M, m, X, basis), logs)
coords red = reduce(hcat, coords)
z = zeros(manifold dimension(M)))
model = fit(PCA, coords_red; maxoutdim=1, mean=z)
X = get vector(M, m, reconstruct(model, [1.0]), basis)
```

for a Vector pts of points on \mathbb{S}^2 by computing a PCA in the tangent space of the mean m.

```
using Manifolds, MultivariateStats
M = Sphere(2)
m = mean(M, pts)
logs = log.(Ref(M), Ref(m), pts)
basis = DefaultOrthonormalBasis()
                                                     principal component as geodesic on \mathbb{S}^2
coords = map(X -> get coordinates(M, m, X, basis), logs)
coords red = reduce(hcat, coords)
z = zeros(manifold dimension(M)))
model = fit(PCA, coords red; maxoutdim=1, mean=z)
X = get vector(M, m, reconstruct(model, [1.0]), basis)
geodesic(M, m, X, range(-1.0, 1.0, length=101))
```

Manopt.il: Optimization on manifolds

Build upon ManifoldsBase. jl to solve

```
arg min F(p)
   p \in \mathcal{M}
```

using

- · a Problem p describing function, gradient, Hessian,...
- · Options o specifying a solver settings and state
- · call solve(p, o), which includes StoppingCriterion calls
- implement your own solver within the solver framework
 - initialize solver!(p. o)
 - step solver!(p. o. i)

The Manopt family: **= manoptjl.org**

[N. Boumal]

manopt.org

Manopt in Matlab pymanopt in Python [I. Townsend, N. Koep, S. Weichwald]

pymanopt.org

Manopt.jl: Available solvers

- cyclic proximal point
- gradient descent
- conjugate gradient descent
- subgradient method

- · Nelder-Mead
- · Douglas-Rachford
- · Riemannian trust regions
- all with a high level interface

Example.

Compute the mean of a pts vector of n points on M.

Summary & Outlook

ManifoldsBase.jl is a flexible lightweight interface for manifolds. Manifolds.jl

- provides a library of basic manifolds
- provides tools for manifolds, for example statistics
- embeddings, metrics and group manifolds with a decorator pattern

Manopt.jl provides optimization tools on manifolds based on ManifoldsBase.jl

What's next?

- automatic differentiation & Zygote
- · a generic way to implement distributions
- · more abstract manifolds (quotient manifold, projective space)
- more manifolds... maybe add your favourite manifold?

Literature

- Absil, P.-A., R. Mahony, and R. Sepulchre (2008). Optimization Algorithms on Matrix Manifolds.

 Princeton University Press. DOI: 10.1515/9781400830244.
- Bačák, M. (2014). "Computing medians and means in Hadamard spaces". In: SIAM Journal on Optimization 24.3, pp. 1542–1566. DOI: 10.1137/140953393.
- Bergmann, R. and P.-Y. Gousenbourger (2018). A variational model for data fitting on manifolds by minimizing the acceleration of a Bézier curve. arXiv: 1807.10090.
- Bergmann, R., F. Laus, G. Steidl, and A. Weinmann (2014). "Second order differences of cyclic data and applications in variational denoising". In: SIAM Journal on Imaging Sciences 7.4, pp. 2916–2953. DOI: 10.1137/140969993.
- do Carmo, Manfredo P. (1992). *Riemannian Geometry*. Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA. ISBN: 0-8176-3490-8.

https://juliamanifolds.github.io/Manifolds.jl/ https://manoptjl.org

🖪 ronnybergmann.net/talks/2020-JuliaCon-Manifolds.pdf