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Why Manifolds?

- cyclic data (phase, e.g. InSAR) a —_
- spherical data (earth, directions) t :
0
- orientations =z
. . ’ |-
- diffusion tensors - L = G
0 1 1 3 1
@ non-linear spaces © Riemannian manifolds phase data

[Bergmann, Laus, Steidl, and Weinmann 2014]

Transferring properties, we provide methods for those data

- statistics
- data processing, e.g. imaging
- optimization

= Implement methods generically for any manifold
‘= Make it easy to specialize methods using multiple dispatch
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Why Manifolds?
- cyclic data (phase, e.g. InSAR)
- spherical data (earth, directions)
- orientations

- diffusion tensors

non-linear spaces Riemannian manifolds
® P © Diffusion tensors from DT-MRI
@ data: Camino project

Transferring properties, we provide methods for those data

- statistics
- data processing, e.g. imaging
- optimization

= Implement methods generically for any manifold
‘= Make it easy to specialize methods using multiple dispatch


http://camino.cs.ucl.ac.uk/index.php?n=Main.Tutorials

Background: A Riemannian manifold

A d-dimensional Riemannian manifold can be informally defined as a set M
covered with a ‘suitable’ collection of charts, that identify subsets of M with open
subsets of R% and a continuously varying inner product on the tangential spaces.

[Absil, Mahony, and Sepulchre 2008]



Background: A Riemannian manifold

Geodesic g(-; p, q) shortest path (on M) between p,q € M
Tangent space T, M at p, with inner product (-, ),
Logarithmic map log, ¢ = §(0;p, q) “speed towards ¢"
Exponential map exp, X= ¢(1), where g(0) = p, 9(0) = X



Implementing a Riemannian manifold Manifold{F}

In Manifolds.jl a manifold is a subtype of Manifold{F}, F € {R, C, H},
that implements functions from ManifoldsBase. j1 like

- inner(M, p, X, Y) for angles between tangent vectors,
- exp(M, p, X)and log(M, p, q),
- more general: retract(M, p, X, m), where mis a retraction method
- moving tangents: vector_transport_to(M, p, X, q, t),
where t is a transport method

® mutating version exp!(M, g, p, X) works in placein q

® interface allows for generic algorithms for any Manifold:

norm(M,p,X), geodesic(M, p, X) and shortest_geodesic(M, p, q)
are available with the above implemented.



A manifold decorator AbstractDecoratorManifold{F}

Properties are often implicitly given, like the Riemannian metric tensor.

The interface provides a decorator manifold acting semi-transparently, i.e.
transparent for all functions specified not to be affected by this decorator.

Example.
ValidationManifold(M) performs (when applicable)

- is_manifold_point(M, p)

+ is_tangent_vector(M, p, X)

before and after every basic function from the interface (exp, log, inner,...).



A different metric MetricManifold{Manifold,Metric}

Goal. Implement different Riemannian metric tensors for a manifold.
® transparent e.g. for manifold_dimension(M)

- existing implementation: default metric (transparent)

- other functions: implementation using parametric type

Example.
+ M = SymmetricPositiveDefinite(3) has
* MetricManifold(M, LinearAffineMetric) as synonym,
+ MetricManifold(M, LogEuclidean) is a second metric,
+ MetricManifold(M, LogCholesky) is a metric providing an exp.

® exp defaults to a method numerically solving the ODE.



Embedded manifolds AbstractEmbeddedManifold{F,<:AbstractEmbeddingType}

Goal. Model embedded manifold(s) of a manifold

© reuse functions (like inner) from embedding.
- different types via AbstractEmbeddingType T
- provide embed, project & get_embedding

Examples.

- Sphere{N,F} <: AbstractEmbeddedManifold
{F, DefaultIsometricEmbeddingType}
into Euclidean(N+1), @ its inner is used
- SymmetricMatrices{N,F} <: AbstractEmbeddedManifold
{F, TransparentIsometricEmbedding}
into Euclidean(N, N; field=F), ® use its exp & log
- or use directly EmbeddedManifold(Manifold, Embedding)



Lie groups AbstractGroupManifold{F, <:AbstractGroupOperation}

Goal. Model manifolds that have a group structure

- a manifold with a smooth binary operator o, e.g.
translation, multiplication, composition
+ an identity element
- together with MetricManifold: left-, right- & bi-invariant metric

Examples.

- TranslationGroup(n) is R™ with translation action

- SpecialOrthogonal{n} <:
GroupManifold{Rotations{n},MultiplicationOperation}

- SpecialEuclidean(n) is a SemidirectProductGroup

- or directly GroupManifold(Manifold, Operation)



Build more manifolds

Given Riemannian manifolds M, M4,..., My you can build

- the ProductManifold: N = M1 x --- x My

points are tuples p = (p1,...,pn), Where p; € M;

Example. N = ProductManifold(M1, M2) Or N = M1xM2
- the PowerManifold: N' = M™*™

points are (nested) arrays p = (p”)?;z where p; ; € M

Example. N = PowerManifold(M, 5, 6) OrN = M*(5, 6)
- the TangentBundle: N =TM = UpeMTpM

points are tuples p = (¢, X), where X € T,M

Example. N = TangentBundle(M)

or more generally VectorBundleFibers

© easy access/modification: p[N, il



Statistics

,I n ) n 5
The mean — ;xz can be phrased as argmin ;Hxi —yl
® replace norm of difference by distance

® no closed form but a smooth optimization problem.

- mean(M, x[, weights, method]) to compute the (weighted) mean, where
method is a gradient descent, geodesic interpolation or an extrinsic estimator

- var(M, x, weights, m=mean(M, x, w)) variance of the data (in T, M)

- similarly available std, kurtosis, skewness, moment

n
A median is given by any arg minZdM(xi,y)
Y=

® nonsmooth optimization problem on M
® method: CyclicProximalPointEstimation [Bacak 2014]
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Bases in tangent spaces

A tangent vector X € T, M is often neither a vector nor of dimension dim .
® use an AbstractBasis for tangent spaces, e.g.

- DefaultBasis for any basis
- DefaultOrthogonalBasis, DefaultOrthonormalBasis W.I.t. (-, +)p
- ProjectedOrthonormalBasis from the embedding

- DiagonalizingOrthonormalBasis diagonalizes the curvature tensor

® do not store the basis explicitly, but provide an iterator.
® to store them explicitly use get_basis(M, p, basis) to get a CachedBasis.

Then use coords = get_coordinates(M, p, X, basis)

and its inverse x

get_vector(M, p, coords, basis)

10



Available basic manifolds

Currently the following manifolds are available

- Centered matrices* - Grassmann* - Skew-symmetric matrices*

- Cholesky space - Hyperbolic space - (Array) Sphere*

- Circle* - Lorentzian Manifold - Symmetric matrices*

- Euclidean®f+ - Multinomial matrices - Symmetric positive definite

- Fixed-rank matrices* - Oblique manifold* - Torus

- Generalized Stiefel* - Probability simplex - Unit-norm symmetric matrices*
- Generalized Grassmann* - Rotations = .. your favourite manifold?

*also available as complex-valued manifold.
falso available as quaternion-valued manifold.

fcan also be used for numbers, vectors, matrices, tensors,...
1



Example: A PCA on the sphere S?

‘= Compute a principal component analysis (PCA)
for a Vector pts of points on S? by computing
a PCA in the tangent space of the mean m.

using Manifolds, MultivariateStats
M = Sphere(2)

a set of points on $2

12



Example: A PCA on the sphere S?

‘= Compute a principal component analysis (PCA)
for a Vector pts of points on S? by computing

a PCA in the tangent space of the mean m.

using Manifolds, MultivariateStats

M = Sphere(2)

m = mean(M, pts)

a set of points on S2and its mean
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Example: A PCA on the sphere S?

‘= Compute a principal component analysis (PCA)
for a Vector pts of points on S? by computing

a PCA in the tangent space of the mean m.

using Manifolds, MultivariateStats

M = Sphere(2)

m = mean(M, pts)
logs = log.(Ref(M), Ref(m), pts)

logarithmic maps of the points into T}, S?
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Example: A PCA on the sphere S?

‘= Compute a principal component analysis (PCA)
for a Vector pts of points on S? by computing

a PCA in the tangent space of the mean m.

using Manifolds, MultivariateStats

M = Sphere(2)

m = mean(M, pts)
logs = log.(Ref(M), Ref(m), pts)

basis = DefaultOrthonormalBasis()

a tangent vector in coordinates of a basis

coords = map(X -> get_coordinates(M, m, X, basis), logs)

coords _red = reduce(hcat, coords)
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Example: A PCA on the sphere S?

‘= Compute a principal component analysis (PCA)
for a Vector pts of points on S? by computing

a PCA in the tangent space of the mean m.

using Manifolds, MultivariateStats

M = Sphere(2)

m = mean(M, pts)
logs = log.(Ref(M), Ref(m), pts)

basis = DefaultOrthonormalBasis() PCA as a tangent vector X (scaled by 1)

coords = map(X -> get_coordinates(M, m, X, basis), logs)
coords _red = reduce(hcat, coords)

z = zeros(manifold _dimension(M)))
model = fit(PCA, coords_red; maxoutdim=1, mean=z)
X = get_vector(M, m, reconstruct(model, [1.0]), basis)

12



Example: A PCA on the sphere S?

‘= Compute a principal component analysis (PCA)
for a Vector pts of points on S? by computing

a PCA in the tangent space of the mean m.

using Manifolds, MultivariateStats

M = Sphere(2)

m = mean(M, pts)
logs = log.(Ref(M), Ref(m), pts)

basis = DefaultOrthonormalBasis() principal component as geodesic on S?
coords = map(X -> get_coordinates(M, m, X, basis), logs)

coords _red = reduce(hcat, coords)

z = zeros(manifold _dimension(M)))

model = fit(PCA, coords_red; maxoutdim=1, mean=z)

X = get_vector(M, m, reconstruct(model, [1.0]), basis)

geodesic(M, m, X, range(-1.0, 1.0, length=101)) “



Manopt.jl: Optimization on manifolds

Build upon ManifoldsBase.jl to solve

arg min F'(p)
) pEM
using
- a Problem p describing function, gradient, Hessian,...
- Options o specifying a solver settings and state
- call solve(p, o), which includes StoppingCriterion calls

® implement your own solver within the solver framework

- initialize_solver!(p, o)

- step_solver!(p, o, i)
Manopt in Matlab pymanopt in Python
The Manopt family: E manoptjl .org [N.Boumal] [). Townsend, N.Koep, S. Weichwald]

manopt.org pymanopt.org -


manoptjl.org
manopt.org
pymanopt.org

Manopt.jl: Available solvers

- cyclic proximal point - Nelder-Mead

- gradient descent - Douglas—-Rachford

- conjugate gradient descent - Riemannian trust regions

- subgradient method ® all with a high level interface
Example.

Compute the mean of a pts vector of n points on M.

F(y) = sum(1/(2*n) = distance.(Ref(M), pts, Ref(y)).”2)
VF(y) = sum(1/n*Vdistance.(Ref(M), pts, Ref(y)))

xMean = gradient_descent(M, F, VF, pts[1];
debug = [:Iteration, " | ", :x, " | ", :Change, " | ", :Cost, "\n"
:Stop, 10]

14



Summary & Outlook

ManifoldsBase.jl is a flexible lightweight interface for manifolds.
Manifolds.jl

- provides a library of basic manifolds
- provides tools for manifolds, for example statistics
- embeddings, metrics and group manifolds with a decorator pattern

Manopt.jl provides optimization tools on manifolds based on ManifoldsBase. jl

What's next?

- automatic differentiation & Zygote

- a generic way to implement distributions

- more abstract manifolds (quotient manifold, projective space)
- more manifolds... maybe add your favourite manifold?

15
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