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1. Introduction



We consider the minimization problem

ar;gj;er?in F(p) + G(A(p))

- M, N are (high-dimensional) Riemannian Manifolds
- F: M — R (locally) convex, nonsmooth

- G: N — R (locally) convex, nonsmooth

- A: M — N nonlinear

- C C M strongly geodesically convex.



Splitting Methods & Algorithms

On a Riemannian manifold M we have

- Cyclic Proximal Point Algorithm (CPPA) (Bacak, 201
- (parallel) Douglas—Rachford Algorithm (PDRA)

[RB, Persch, Steidl, 2016]

On R™ PDRA is known to be equivalent to

[Setzer, 2011; O'Connor, Vandenberghe, 2018]

- Primal-Dual Hybrid Gradient Algorithm (PDHGA)

[Esser, Zhang, Chan, 2010]

- Chambolle-Pock Algo rithm (CPA) [Chambolle, Pock, 2011; Pock et al., 2009]

Goal.

Formulate Duality on a Manifold
Derive a Riemannian Chambolle-Pock Algorithm (RCPA)



A d-dimensional Riemannian Manifold M

A d-dimensional Riemannian manifold can be informally
defined as a set M covered with a ‘suitable’ collection of
charts, that identify subsets of M with open subsets of R? and

a continuously varying inner product on the tangential spaces.
[Absil, Mahony, Sepulchre, 2008]



A d-dimensional Riemannian Manifold M

Geodesic g(-; p,q) shortest path (on M) between p,q € M
Tangent space T, M at p, with inner product (-, ),
Logarithmic map log, ¢ = ¢(0;p, q) “speed towards ¢"
Exponential map exp, X= g(1), where g(0) = p, 9(0) = X
Parallel transport PT,,_,,(Y) of Y € T, M along g(-;p, q)



Musical Isomorphisms

[Lee, 2003]

The dual space 7, M of a tangent space 7,M is called
cotangent space.

We define the musical isomorphisms

b M3 X = X € TyMvia (X°,Y) = (X,Y),

forallY € ToM
“H TIM S € € e ToMvia (€8,Y), = (€,Y)
forallY € TypM.

= inner product and parallel transport on/between T, M



[Sakai, 1996; Udriste, 1994]
A set C ¢ M is called (strongly geodesically) convex if for all
p,q € C the geodesic g(+;p,q) Is unique and lies in C.

A function F: C — R is called convex if for all p, ¢ € C the
composition F(g(t;p,q)),t € [0,1], Is convex.



2. Fenchel Duality



The Euclidean Fenchel Conjugate

Let f: R™ — R be proper and convex.

We define the Fenchel conjugate f*: R™ — R of f by
T
£(€) = sup (6,2) ~ f@) = sup | ) (7
 zeRn zern \ — F(z)

- interpretation: maximize the distance of ¢z to f
= extremum seeking problem on the epigraph

The Fenchel biconjugate reads

7 (@) = (f*)"(z) = sup{(¢, z) — f*(§)}-

£eRm



Illustration of the Fenchel Conjugate

The function f

The Fenchel conjugate f*
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The Riemannian m—Fenchel Conjugate

[RB et al., 2019]
alternative approach: [Ahmadi Kakavandi, Amini, 2010]

Idea: Introduce a point on M to “act as” 0.

letm € C C M begivenand F: C — R.
The m-Fenchel conjugate F*: 7, M — R is defined by

Fr(Em) = up {(&m, X) — F(exp,, X)},

C,m
where
Lom ={X € TmM|qg=-exp,, X € Cand | X||, = d(q,p)}.
Let m’ € C.

The mm/-Fenchel-biconjugate E** ,: C — R is given by,

FTT’:;YL’ (p> = SUB { <’£m’7 log'rn’ p> - Frtz (Pm'ﬁm gm’) } .

/
m € m/



Saddle Point Formulation

From

gleig F(p) + G(A(p))

we derive the saddle point formulation for the n-Fenchel
conjugate of G as

i n,l nA F _G: nj.
r;lelggnrg%?/v@ og, A(p)) + F(p) (&)

For Optimality Conditions and the Dual Prolem: What's A*?

Approach. Linearization:

onR™: [Valkonen, 2014]

A(p) =~ expp(m) DA(m)[log,, p]



3. The Chambolle-Pock Algorithm




The exact Riemannian Chambolle-Pock Algorithm (eRCPA)

Input: m,p¥ € C c M, n=A(m), e TIN,
and parameters o, 7, 0 > 0
1 k<0
2: ]3(0) — p<o)
3. while not converged do

4 < Prox,gs ( + T( log,, A(ﬁ(’“))) )

5 p*+) « prox,_ g <epr(k-)<Pm*>p(l\:) —oDA(m)*] ] ﬁ))
6: ]j(k—H) <= eXPpy(k+1) (—9 Ing(kJﬂ) p(kv))

7: k+—k+1

8. end while

Output: p(*)
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Generalizations & Variants of the RCPA

Classically [Chambolle, Pock, 2011]

- change o0 = oy, 7 = 71, 0 = 6, during the iterations
- introduce an acceleration ~
- relax dual ¢ instead of primal p (switches lines 4 and 5)

Furthermore we [RB et al, 2019]
- introduce the [RCPA: linearize A, too, i.e.
log, AP*) = Pa(m)—n DA(m)[log,, pV]
- choose n # A(m) introduces a parallel transport
DAm)*EF*V] = DA(M)* [Prssagm) €07
- change m = m®, n = n(®) during the iterations

1



The Linearized RCPA with Dual Relaxation

We introduce for ease of notation

ﬁ(k) = €XPp(k) (Pmap(k) _(U(DA(m))*[é’k)])ﬁ)

for the linearized Riemannian Chambolle Pock
with

&9 ) +0(el) — €8 7).

Especially for # = 1 we obtain

&9 =26 —gF .
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A Conjecture

We define
Ok) = @™, 5) + (€D, DA(m)[G),

where

(k-+1) —Pﬁ(k)—)p(k) lOgﬁ(k) ﬁ) _logm p(k—H) +logm ]3\7

Ck = Pyi) sy (10, P
and p is a minimizer of the primal problem.

Remark.
For M = R% ¢, = 5% — p®) = —o(DA(m))* €] = C(k) = 0.

Conjecture.
Assume o7 < |[DA(m)||%. Then C(k) > 0 forallk > K, K € N.

13



Convergence of the IRCPA

Theorem. [RB et al, 2019]

Let M, N be Hadamard. Assume that the linearized problem

;1;161}\1/11 {nrg%?j\/'«DA(m)) [Pn—>A(m) gn]vlogm p> + F(p) - Gn (gn)

has a saddle point (p, én). Choose o, 7 such that
ot < |DA(m)|?
and assume that C(k) > 0 for all K > K. Then it holds

1. the sequence (p®, £%) remains bounded,

2. there exists a saddle-point (p,&),)
such that p® — p’ and ¢ — ¢’

14



4. Numerical Examples




The /2-TV Model

[Rudin, Osher, Fatemi, 1992; Lellmann et al,, 2013; Weinmann, Demaret, Storath, 2014]

For a manifold-valued image f € M, M = N% % we compute

1
argmin —F(p) + G(A(p)), a>0,
peM &

with
- data term F(p) = 1d%,(p, f)
- “forward differences” A: M — (TN )1 =12

A :(1 e lam, o )
p (p) (108, Piters 108y, Pirer) i€ {1t =1} % {1, dp—1}

- prior G(X) = ||X||g,41 Similar to a collaborative TV

[Duran et al,, 2016]
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Numerical Example for a P(3)-valued Image

(11000

VOWHL
[0

P(3)-valued data. anisotropic TV, a = 6.

- In each pixel we have a symmetric positive definite matrix

- Applications: denoising/inpainting e.g. of DT-MRI data



Numerical Example for a P(3)-valued Image

3874

Cost

1 10 100 1,000
lterations

Approach. CPPA as benchmark

CPPA PDRA LRCPA
M=7 n=058 oc=7=04
parameters A=093 ~y=02m=1I
iterations 4000 122 113

runtime 1235S. 380s. 96.15.
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Base point Effect on S?-valued data
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5. Summary & Conclusion




Summary & Outlook

Summary.
- We introduced a duality framework
on Riemannian manifolds
- We derived a Riemannian Chambolle Pock Algorithm

- Numerical examples illustrate performance

Outlook.

- investigate C'(k)
- strategies for choosing m, n (adaptively)
- investigate linearization error

- extend algorithm to graph-structured data



Reproducible Research

The algorithm will be published in Manopt.j1, a Julia Package
available at http://manoptjl.org.

Goal.

Being able to use an(y) algorithm for a(ny) model directly on
a(ny) manifold easily and efficiently.

Alternatives.

Manopt manopt.org pymanopt pymanopt.github.io
(Matlab, N. Boumal) (Python, S. Weichwald et. al.)
Example.

pOpt = linearizedChambollePock(M, N, cost,
p, & m, n, DA, AdjDA, proxF, proxConjG, o, 7)
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