A Primal-Dual Algorithm for Convex Nonsmooth Optimization on Riemannian Manifolds

Ronny Bergmann^a, Roland Herzog^a, José Vidal-Núñez^a, Daniel Tenbrinck^b

European Numerical Mathematics and Advanced Applications Conference 2019

MS 38: Modeling of Reduced Order Submanifolds in Non-Linear Spaces

Egmond aan Zee, The Netherlands, October 4, 2019

^aTechnische Universität Chemnitz, Chemnitz, Germany

^bFriedrich-Alexander-Universität, Erlangen, Germany.

1. Introduction

The Model

We consider the minimization problem

$$\underset{p \in \mathcal{C}}{\arg \min} F(p) + G(\Lambda(p))$$

- \cdot \mathcal{M}, \mathcal{N} are (high-dimensional) Riemannian Manifolds
- $F : \mathcal{M} \to \overline{\mathbb{R}}$ (locally) convex, nonsmooth
- $G \colon \mathcal{N} \to \overline{\mathbb{R}}$ (locally) convex, nonsmooth
- $\cdot \Lambda \colon \mathcal{M} \to \mathcal{N}$ nonlinear
- \cdot $\mathcal{C} \subset \mathcal{M}$ strongly geodesically convex.

1

Splitting Methods & Algorithms

On a Riemannian manifold \mathcal{M} we have

Cyclic Proximal Point Algorithm (CPPA)

[Bačák, 2014]

· (parallel) Douglas–Rachford Algorithm (PDRA)

[RB, Persch, Steidl, 2016]

On \mathbb{R}^n PDRA is known to be equivalent to

[Setzer, 2011; O'Connor, Vandenberghe, 2018]

Primal-Dual Hybrid Gradient Algorithm (PDHGA)

[Esser, Zhang, Chan, 2010]

Chambolle-Pock Algorithm (CPA)

[Chambolle, Pock, 2011; Pock et al., 2009]

Goal.

Formulate Duality on a Manifold Derive a Riemannian Chambolle–Pock Algorithm (RCPA)

A d-dimensional Riemannian Manifold ${\mathcal M}$

A d-dimensional Riemannian manifold can be informally defined as a set $\mathcal M$ covered with a 'suitable' collection of charts, that identify subsets of $\mathcal M$ with open subsets of $\mathbb R^d$ and a continuously varying inner product on the tangential spaces.

[Absil, Mahony, Sepulchre, 2008]

A d-dimensional Riemannian Manifold ${\mathcal M}$

Geodesic $g(\cdot; p, q)$ shortest path (on \mathcal{M}) between $p, q \in \mathcal{M}$ **Tangent space** $\mathrm{T}_p \mathcal{M}$ at p, with inner product $(\cdot, \cdot)_p$ **Logarithmic map** $\log_p q = \dot{g}(0; p, q)$ "speed towards q" **Exponential map** $\exp_p X = g(1)$, where $g(0) = p, \dot{g}(0) = X$ **Parallel transport** $\mathrm{PT}_{p \to q}(Y)$ of $Y \in \mathrm{T}_p \mathcal{M}$ along $g(\cdot; p, q)$

Musical Isomorphisms

[Lee, 2003]

The dual space $\mathcal{T}_p^*\mathcal{M}$ of a tangent space $\mathcal{T}_p\mathcal{M}$ is called cotangent space.

We define the musical isomorphisms

$$\cdot \ \flat \colon \mathcal{T}_p \mathcal{M} \ni X \mapsto X^\flat \in \mathcal{T}_p^* \mathcal{M} \ \text{via} \ \langle X^\flat, Y \rangle = (X, Y)_p \\ \text{for all } Y \in \mathcal{T}_p \mathcal{M}$$

•
$$\sharp \colon \mathcal{T}_p^* \mathcal{M} \ni \xi \mapsto \xi^\sharp \in \mathcal{T}_p \mathcal{M} \text{ via } (\xi^\sharp, Y)_p = \langle \xi, Y \rangle$$
 for all $Y \in \mathcal{T}_p \mathcal{M}$.

 \Rightarrow inner product and parallel transport on/between $\mathcal{T}_p^*\mathcal{M}$

Convexity

[Sakai, 1996; Udrişte, 1994]

A set $\mathcal{C} \subset \mathcal{M}$ is called (strongly geodesically) convex if for all $p,q \in \mathcal{C}$ the geodesic $g(\cdot;p,q)$ is unique and lies in \mathcal{C} .

A function $F\colon \mathcal{C} \to \overline{\mathbb{R}}$ is called **convex** if for all $p,q\in \mathcal{C}$ the composition $F(g(t;p,q)),t\in [0,1]$, is convex.

2. Fenchel Duality

The Euclidean Fenchel Conjugate

Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper and convex.

We define the Fenchel conjugate $f^* \colon \mathbb{R}^n \to \overline{\mathbb{R}}$ of f by

$$f^*(\xi) \coloneqq \sup_{x \in \mathbb{R}^n} \langle \xi, x \rangle - f(x) = \sup_{x \in \mathbb{R}^n} \begin{pmatrix} \xi \\ -1 \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} x \\ F(x) \end{pmatrix}$$

- \cdot interpretation: maximize the distance of $\xi^{\mathrm{T}}x$ to f
- \Rightarrow extremum seeking problem on the epigraph

The Fenchel biconjugate reads

$$f^{**}(x) = (f^*)^*(x) = \sup_{\xi \in \mathbb{R}^n} \{ \langle \xi, x \rangle - f^*(\xi) \}.$$

6

Illustration of the Fenchel Conjugate

The Riemannian m-Fenchel Conjugate

[RB et al., 2019]

alternative approach: [Ahmadi Kakavandi, Amini, 2010]

Idea: Introduce a point on $\mathcal M$ to "act as" 0.

Let $m \in \mathcal{C} \subset \mathcal{M}$ be given and $F \colon \mathcal{C} \to \overline{\mathbb{R}}$.

The *m*-Fenchel conjugate $F_m^* \colon \mathcal{T}_m^* \mathcal{M} \to \overline{\mathbb{R}}$ is defined by

$$F_m^*(\xi_m) := \sup_{X \in \mathcal{L}_{\mathcal{C},m}} \{ \langle \xi_m, X \rangle - F(\exp_m X) \},$$

where

$$\mathcal{L}_{\mathcal{C},m} \coloneqq \{X \in \mathcal{T}_m \mathcal{M} | q = \exp_m X \in \mathcal{C} \text{ and } \|X\|_p = d(q,p)\}.$$

Let $m' \in \mathcal{C}$.

The mm'-Fenchel-biconjugate $F^{**}_{mm'}\colon \mathcal{C}\to \overline{\mathbb{R}}$ is given by,

$$F_{mm'}^{**}(p) = \sup_{\xi_{m'} \in \mathcal{T}_{m'}^* \mathcal{M}} \left\{ \langle \xi_{m'}, \log_{m'} p \rangle - F_m^* (\mathcal{P}_{m' \to m} \xi_{m'}) \right\}.$$

Saddle Point Formulation

From

$$\min_{p \in \mathcal{C}} F(p) + G(\Lambda(p))$$

we derive the saddle point formulation for the $n\text{-}\mathsf{Fenchel}$ conjugate of G as

$$\min_{p \in \mathcal{C}} \max_{\xi_n \in \mathcal{T}_n^* \mathcal{N}} \langle \xi_n, \log_n \Lambda(p) \rangle + F(p) - G_n^*(\xi_n).$$

For Optimality Conditions and the Dual Prolem: What's Λ^* ?

Approach. Linearization:

on \mathbb{R}^n : [Valkonen, 2014]

$$\Lambda(p) \approx \exp_{\Lambda(m)} D\Lambda(m) [\log_m p]$$

3. The Chambolle–Pock Algorithm

The exact Riemannian Chambolle–Pock Algorithm (eRCPA)

```
Input: m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n = \Lambda(m), \xi_n^{(0)} \in \mathcal{T}_*^* \mathcal{N}.
                    and parameters \sigma, \tau, \theta > 0
   1: k \leftarrow 0
   2: \bar{p}^{(0)} \leftarrow p^{(0)}
   3: while not converged do
   4: \xi_n^{(k+1)} \leftarrow \operatorname{prox}_{\tau G_*^*} \left( \xi_n^{(k)} + \tau \left( \log_n \Lambda(\bar{p}^{(k)}) \right)^{\flat} \right)
  5: p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F} \left( \exp_{p^{(k)}} \left( \mathcal{P}_{m \to p^{(k)}} \left( -\sigma D \Lambda(m)^* \left[ \xi_n^{(k+1)} \right] \right)^{\sharp} \right) \right)
   6: \bar{p}^{(k+1)} \leftarrow \exp_{n^{(k+1)}} \left( -\theta \log_{n^{(k+1)}} p^{(k)} \right)
   7: k \leftarrow k + 1
   8: end while
Output: p^{(k)}
```

Generalizations & Variants of the RCPA

Classically

[Chambolle, Pock, 2011]

- change $\sigma = \sigma_k$, $\tau = \tau_k$, $\theta = \theta_k$ during the iterations
- introduce an acceleration γ
- relax dual $\bar{\xi}$ instead of primal \bar{p} (switches lines 4 and 5)

Furthermore we

[RB et al., 2019]

• introduce the IRCPA: linearize Λ , too, i.e.

$$\log_n \Lambda(\bar{p}^{(k)}) \longrightarrow \mathcal{P}_{\Lambda(m) \to n} D\Lambda(m) [\log_m \bar{p}^{(k)}]$$

· choose $n \neq \Lambda(m)$ introduces a parallel transport

$$D\Lambda(m)^*[\xi_n^{(k+1)}] \rightarrow D\Lambda(m)^*[\mathcal{P}_{n\to\Lambda(m)}\,\xi_n^{(k+1)}]$$

• change $m=m^{(k)}$, $n=n^{(k)}$ during the iterations

The Linearized RCPA with Dual Relaxation

We introduce for ease of notation

$$\widetilde{p}^{(k)} = \exp_{p^{(k)}} \left(\mathcal{P}_{m \to p^{(k)}} - \left(\sigma(D\Lambda(m))^* [\bar{\xi}_n^{(k)}] \right)^\sharp \right)$$

for the <u>linearized</u> Riemannian Chambolle Pock with dual relaxed

$$\bar{\xi}_n^{(k)} \leftarrow \xi_n^{(k)} + \theta(\xi_n^{(k)} - \xi_n^{(k-1)}).$$

Especially for $\theta = 1$ we obtain

$$\bar{\xi}_n^{(k)} = 2\xi_n^{(k)} - \xi_n^{(k-1)}.$$

A Conjecture

We define

$$C(k) := \frac{1}{\sigma} d^2(p^{(k)}, \tilde{p}^{(k)}) + \langle \bar{\xi}_n^{(k)}, D\Lambda(m)[\zeta_k] \rangle,$$

where

$$\zeta_k = \mathcal{P}_{p^{(k)} \to m} \left(\log_{p^{(k)}} p^{(k+1)} - \mathcal{P}_{\tilde{p}^{(k)} \to p^{(k)}} \log_{\tilde{p}^{(k)}} \widehat{p} \right) - \log_m p^{(k+1)} + \log_m \widehat{p},$$

and \hat{p} is a minimizer of the primal problem.

Remark.

For
$$\mathcal{M} = \mathbb{R}^d$$
: $\zeta_k = \tilde{p}^{(k)} - p^{(k)} = -\sigma(D\Lambda(m))^*[\bar{\xi}_n^{(k)}] \Rightarrow C(k) = 0$.

Conjecture.

Assume $\sigma \tau < \|D\Lambda(m)\|^2$. Then $C(k) \geq 0$ for all k > K, $K \in \mathbb{N}$.

Convergence of the IRCPA

Theorem. [RB et al., 2019]

Let \mathcal{M}, \mathcal{N} be Hadamard. Assume that the linearized problem

$$\min_{p \in \mathcal{M}} \max_{\xi_n \in \mathcal{T}_n^* \mathcal{N}} \langle (D\Lambda(m))^* [\mathcal{P}_{n \to \Lambda(m)} \, \xi_n], \log_m p \rangle + F(p) - G_n^*(\xi_n).$$

has a saddle point $(\widehat{p},\widehat{\xi}_n)$. Choose σ, τ such that

$$\sigma \tau < \|D\Lambda(m)\|^2$$

and assume that $C(k) \ge 0$ for all k > K. Then it holds

- 1. the sequence $(p^{(k)}, \xi_n^{(k)})$ remains bounded,
- 2. there exists a saddle-point (p',ξ'_n) such that $p^{(k)}\to p'$ and $\xi^{(k)}_n\to \xi'_n$.

4. Numerical Examples

The ℓ^2 -TV Model

[Rudin, Osher, Fatemi, 1992; Lellmann et al., 2013; Weinmann, Demaret, Storath, 2014]

For a manifold-valued image $f \in \mathcal{M}$, $\mathcal{M} = \mathcal{N}^{d_1,\ d_2}$, we compute

$$\underset{p \in \mathcal{M}}{\arg\min} \frac{1}{\alpha} F(p) + G(\Lambda(p)), \qquad \alpha > 0,$$

with

- data term $F(p) = \frac{1}{2}d_{\mathcal{M}}^2(p,f)$
- "forward differences" $\Lambda \colon \mathcal{M} \to (T\mathcal{N})^{d_1-1, d_2-1, 2}$,

$$p \mapsto \Lambda(p) = \left((\log_{p_i} p_{i+e_1}, \log_{p_i} p_{i+e_2}) \right)_{i \in \{1, \dots, d_1 - 1\} \times \{1, \dots, d_2 - 1\}}$$

- prior $G(X) = \|X\|_{g,q,\mathbf{1}}$ similar to a collaborative TV [Duran et al., 2016]

Numerical Example for a $\mathcal{P}(3)$ -valued Image

- in each pixel we have a symmetric positive definite matrix
- · Applications: denoising/inpainting e.g. of DT-MRI data

Numerical Example for a $\mathcal{P}(3)$ -valued Image

Approach. CPPA as benchmark

	СРРА	PDRA	lrcpa
parameters	$\lambda_k = \frac{4}{k}$	$\eta = 0.58$ $\lambda = 0.93$	$\sigma = \tau = 0.4$ $\gamma = 0.2$, $m = I$
iterations	4000	122	113
runtime	1235 s.	380 s.	96.1 S.

Base point Effect on S^2 -valued data

Base point Effect on S²-valued data

Result, m the mean (p. Px.)

Result, m west (p. Px.)

- pieceweise constant results for both
- ! different linearizations lead to different models

Base point Effect on S²-valued data

5. Summary & Conclusion

Summary & Outlook

Summary.

- We introduced a duality framework on Riemannian manifolds
- · We derived a Riemannian Chambolle Pock Algorithm
- · Numerical examples illustrate performance

Outlook.

- investigate C(k)
- strategies for choosing m, n (adaptively)
- investigate linearization error
- · extend algorithm to graph-structured data

Reproducible Research

The algorithm will be published in Manopt.jl, a Julia Package available at http://manoptjl.org.

Goal.

Being able to use an(y) algorithm for a(ny) model directly on a(ny) manifold easily and efficiently.

Alternatives.

Manopt manopt.org pymanopt pymanopt.github.io (Matlab, N. Boumal) (Python, S. Weichwald et. al.)

Example.

```
pOpt = linearizedChambollePock(M, N, cost, p, \xi, m, n, D\Lambda, AdjD\Lambda, proxF, proxConjG, \sigma, \tau)
```

Reproducible Research

The algorithm will be published in Manopt.jl, a Julia Package available at http://manoptjl.org.

Goal.

Being able to use an(y) algorithm for a(ny) model directly on a(ny) manifold easily and efficiently.

Alternatives.

Manopt manopt.org pymanopt pymanopt.github.io (Matlab, N. Boumal) (Python, S. Weichwald et. al.)

Example.

```
pOpt = exactChambollePock(M, N, cost, p, \xi, m, n, \Lambda, AdjD\Lambda, proxF, proxConjG, \sigma, \tau)
```

Selected References

Absil, P.-A.; Mahony, R.; Sepulchre, R. (2008). Optimization Algorithms on Matrix Manifolds. Princeton University Press. DOI: 10.1515/9781400830244.

Bačák, M. (2014). "Computing medians and means in Hadamard spaces". *SIAM Journal on Optimization* 24,3, pp. 1542–1566. DOI: 10.1137/140953393.

RB; Persch, J.; Steidl, G. (2016). "A parallel Douglas Rachford algorithm for minimizing ROF-like functionals on images with values in symmetric Hadamard manifolds". SIAM Journal on Imaging Sciences 9.4, pp. 901–937. DOI: 10.1137/15M1052858.

RB; Herzog, R.; Tenbrinck, D.; Vidal-Núñez, J. (2019). Fenchel Duality Theory and A Primal-Dual Algorithm on Riemannian Manifolds. arXiv: 1908.02022.

Chambolle, A.; Pock, T. (2011). "A first-order primal-dual algorithm for convex problems with applications to imaging". *Journal of Mathematical Imaging and Vision* 40.1, pp. 120–145. DOI: 10.1007/s10851-010-0251-1.

🛮 ronnybergmann.net/talks/2019-ENuMath-RiemannianChambollePock.pdf