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Data Fitting on Manifolds

Given data points dp,...,d, on a Riemannian manifold M and
time points ¢; € I, find a “nice” curve y: I — M, v € T, such
that v(¢;) = d, (interpolation) or ~(t;) ~ d; (approximation).
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Data Fitting on Manifolds

Given data points dp,...,d, on a Riemannian manifold M and
time points ¢; € I, find a “nice” curve y: I — M, v € T, such
that v(¢;) = d, (interpolation) or ~(t;) ~ d; (approximation).

- T" set of geodesics & approximation: geodesic regression

[Rentmeesters, 2011; Fletcher, 2013; Boumal, Absil, 2011]

- I" Sobolev space of curves: Inifinite-dimensional problem

[Samir et al,, 2012]

- I composite Bézier curves; LSs in tangent spaces

[Arnould et al., 2015; Gousenbourger, Massart, Absil, 2018]

- Discretized curve, I' = MN, [Boumal, Absil, 2011]

This talk.

“nice” means minimal (discretized) acceleration (“as straight as
possible”) for I' the set of composite Bézier curves.

Closed form solution for M = R% Natural (cubic) splines.



A d-dimensional Riemannian Manifold M

A d-dimensional Riemannian manifold can be informally
defined as a set M covered with a ‘suitable’ collection of
charts, that identify subsets of M with open subsets of R? and

a continuously varying inner product on the tangential spaces.
[Absil, Mahony, Sepulchre, 2008]



A d-dimensional Riemannian Manifold M

Geodesic g(-; p,q) shortest path (on M) between p,q € M
Tangent space T, M at p, with inner product (-, Vp
Logarithmic map log, ¢ = ¢(0;p, q) “speed towards ¢"
Exponential map exp, X= ¢(1), where g(0) = p, 9(0) = X



Variational Methods on Manifolds

Variational methods model a trade-off between staying close
to the data and minimizing a certain property

E(p) = D(p; f) + aR(p), peM

- o> 0isaweight

- M is a Riemannian manifold

- given (input) data f € M

- data or similarity term D(p; f)

- regularizer / prior R(p)

- &£ is smooth, but high-dimensional, M = N™, m € N



(Euclidean) Bézier Curves

Definition . _ [Bézier, 1962]
A Bezier curve B of degree K € Ny is a function

Br: [0,1] — R? parametrized by control points by, ...,bx € R?
and defined by

K
Bk (t;bo,. .., bk) =Y _b;Bjk(t),
=0

[Bernstein, 1912]

where B; i = (%)#/(1— ¢)¥~7 are the Bernstein polynomials of
degree K.

Evaluation via Casteljau’s algorithm. [de Casteljau, 1959]



Illustration of de Casteljau’s Algorithm

The set of control points bg, by, by, bs.



Illustration of de Casteljau’s Algorithm

Evaluate line segments at t = 1, obtain 2/, 21" 2!,



Illustration of de Casteljau’s Algorithm
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Repeat evaluation for new line segments to obtain xg],x?].



Illustration of de Casteljau’s Algorithm
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Repeat for the last segment to obtain Bs(3; bo, b1, by, b3) = xg’].



Illustration of de Casteljau’s Algorithm
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Same procedure for evaluation of 63(%; bo, b1, by, b3).



Illustration of de Casteljau’s Algorithm
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Same procedure for evaluation of 63( ; 0o, b1, b2, b3).



Illustration of de Casteljau’s Algorithm

by

b3
Complete curve Bs(t; bo, b1, by, b3).



Composite Bézier Curves

Definition
A composite Bezier curve B: [0,n] — R? is defined as

B (£:08,...,5%) ift € [0,1],

B(t) = ' ' .
Br(t —i;bp,...,b%), ifte(,i+1, i=1...,n—1



Composite Bézier Curves

Definition
A composite Bezier curve B: [0,n] — R? is defined as

60, b0 ift e [0,1],
B(t) = B (t; by | K)' | [0,7]
Br(t —i;bp,...,b%), ifte(,i+1, i=1...,n—1

Denote ith segment by B;(t) = Bk (t;bY, . .., b% ) and p; = b,

ob;
b50

bo = po




Composite Bézier Curves

Definition
A composite Bezier curve B: [0,n] — R? is defined as

60, b0 ift e [0,1],
B(t) = Bk (t; by | K)' | [0,1]
Br(t —i;bp,...,b%), ifte(,i+1, i=1...,n—1

Denote ith segment by B;(t) = Bk (t;bY, . .., b% ) and p; = b,

- continuous iff B;—1(1) = B;(0),i=1,...,n—1
= =0 =p;,i=1,...,n—1
+ continuously differentiable iff p; = 3(b%, + b%)



Bézier Curves on a Manifold

Definition. ] ) ) [Park, Ravani, 1995; Popiel, Noakes, 2007]
Let M be a Riemannian manifold and bg,...,bx € M, K € N.

The (generalized) Bézier curve of degree k, k < K, is defined as
/Bk(tv bOa o 7bk) - g(tﬁkf'I(tv bOa o 7bk71)76k71(t; b17 o 7bk))7
if k>0, and

Bo(t; bo) = bo.



Bézier Curves on a Manifold

Definition. ] ) ) [Park, Ravani, 1995; Popiel, Noakes, 2007]
Let M be a Riemannian manifold and bg,...,bx € M, K € N.

The (generalized) Bézier curve of degree k, k < K, is defined as

/Bk(tv bOa o 7bk) - g(tﬁkf'I(tv bOa o 7bk71)76k71(t; b17 o 7bk))7

if k>0, and
Bo(t; bo) = bo.

- Bézier curves B1(t; by, by) = g(t; bo, b1) are geodesics.
- composite Béezier curves B: [0,n] — M completely
analogue (using geodesics for line segments)



Bézier Curves on a Manifold

Definition. ) ) ) [Park, Ravani, 1995; Popiel, Noakes, 2007]
Let M be a Riemannian manifold and bg,...,bx € M, K € N

The (generalized) Bézier curve of degree k, k < K, is defined as
Br(t; bo, - - -, b) = g(t; Be—1(t; bo, - -, bk—1), Br—1(t; b1, - .., b)),
if k>0, and
Bo(t; bo) = bo.
The Riemannian composite Bezier curve B(t) is

- continuous iff B;_1(1) = B;(0),i=1,...,n—1
=0 = =p,i=1...,n—1
- continuously differentiable |ff pi = g(3;b% ", bY)
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- continuous iff B;_1(1) = B;(0),i=1,...,n—1
=0 = =p,i=1...,n—1
- continuously differentiable iff &%, = g(2; ¢, p;).



Illustration of a Composite Bézier Curve on the Sphere S?

The directions, e.g. log,,. b}, are now tangent vectors.



A Variational Model for Data Fitting

Let do,...,d, € M. A model for data fitting reads

D?B(t) 2
()H dt,  A>0,

A "
&) =53 duB®na + [ 7522,
k=0

where B € T' is from the set of continuously differentiable
composite Bezier curve of degree K with n segments.



A Variational Model for Data Fitting

Let do,...,d, € M. A model for data fitting reads

D?B(t) H2
dt?2 B

e "
E(B) =5 diy(B(k), dy) +/ dt,  A>0,
2 0
k=0
where B € T' is from the set of continuously differentiable
composite Bezier curve of degree K with n segments.

- Goal: find minimizer B* € T’
- finite dimensional optimization problem
in the control points b; i.e. on M% with
- L=n(K—-1)+2
- )\ — oo yields interpolation (px = dg) = L = n(K —2) +1



Interlude: Second Order Differences on Manifolds

Second order difference: [RB et al, 2014; RB, Weinmann, 2016; Bacak et al, 2016]

do(z,y, 2) = min dup(e,y), z,y,2 € M,

ce Y]
C... mid point(s) of geodesic(s) g(-; z, 2)

3lle =2+l = 3@ +2) =yl 2 Moy
Y

c(z, 2)

10



Discretizing the Data Fitting Model

We discretize the absolute second order covariant derivative

/n D2B(t)Hz dt~]§ Ad3[B(si_1), B(si), B(si11)]
o I dt?2 iy — Ay .
on equidistant points so, ..., sy with step size A; = s1 — so.

Evaluating £(B) consists of evaluation of geodesics and
squared (Riemannian) distances

- (N + 1)K geodesics to evaluate the Bézier segments
- N geodesics to evaluate the mid points ¢

- N squared distances to obtain the second order absolute
finite differences squared

1



Gradient of the Discretized Data Fitting Model

For the gradient of the discretized data fitting model

), dy) + sz Asd%[B(Si_O, B(s;), B(si41)] .

)\ n
E(B) =53 diu(Bk =
k=0 g

k=1
we

- identified first and last control points p; = b= ' = b}

- plug in the constraint b ', = g(2; bi, p;)
= Introduces a further chain rule for the differential
= reduces the number of optimization variables.

- concatenation of adjoint Jacobi fields (evaluated at the
points s;) yields the gradient V&.

12



The Differential of a Geodesic w.r.t. its Start Point

The geodesic variation
Lye(s,t) = exp, (5 (C(5)), s € (—e,e), t €10,1],e > 0.
is used to define the Jacobi field Jyg(t) = 2T, (s, t)]s=o.

- Te(5,0) = Yae(s)
Then the differential reads D,g(t;-,y)[£] = Jg.(t). 13



Implementing Jacobi Fields

- On symmetric manifolds, the Jacobi field can be evaluated
in closed form, since the PDE decouples into ODEs.

- The adjoint Jacobi fields Jj (t) are characterized by
<Jg 5( ) > <£7 gn( )) T for a“€ S TTMvn S Tg(t;x,y)M

can be computed without extra efforts, i.e. the same ODEs
occur.

= adjoint Jacobi fields can be used to calculate the gradient

- Gradient of iterated evaluations of geodesics can be
computed by composition of (adjoint) Jacobi fields

14



Gradient Descent on a Manifold

Let N/ = ML be the product manifold of M,

Input.

- EN =R,

- its gradient Vx/€,

- initial data ¢ = b e N/

- step sizes s > 0,k € N.
Output: G e V
k<« 0
repeat

q* ) exp w) (—sk V€ ()

k+k+1
until a stopping criterion is reached
return § := ¢

15



Armijo Step Size Rule

Let ¢ = ¢'®) be an iterate from the gradient descent algorithm,
B,o0 € (0,1),a > 0.

Let m be the smallest positive integer such that

E(q) — E(exp,(—B™aVNE())) > aB8™alVNE(Q)llqg

holds. Set the step size s := f™a.



Minimizing with Known Minimizer

Original
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Interpolation by Bézier Curves with Minimal Acceleration.

A comp. Bezier curve (black) and its mnimizer (blue).



Approximation by Bézier Curves with Minimal Acceleration.

In the following video A is slowly decreased from 10 to o.

The initial setting, A = 10. "



Approximation by Bézier Curves with Minimal Acceleration.

In the following video X is slowly decreased from 10 to o.
= — E,\~

Summary of reducing A from 10 (violet) to zero (yellow). "



Comparison tO PreVious Approach [Gousenbourger, Massart, Absil, 2018]

This curve (dashed) is “too global” to be solved in a tangent

space (dotted) correctly, while our method (blue) still works. ~ 2°



An Example of Rotations M = SO(3)

Initialization with approach from composite splines
[Gousenbourger, Massart, Absil, 2018]

. =
= w y = w°© =: =
- 2= 50 S0 5 5N
‘:ﬁ - B s :?

TSP AR B R
] = - . «° ) =

Our method outperforms the approach of solving linear
systems in tangent spaces, but their approach can serve as an
initialization.

21



We investigated a model to minimize the acceleration of a
Bézier curve

- using second order differences
- employing Jacobi fields
- using a gradient descent w.rt. the control points

Implement Algorithms in the Julia package
Manopt.jl —see http://manoptjl.org

an manifold optimization toolbox in Julia.

Use an(y) algorithm for a(ny) model directly on a(ny) manifold
efficiently in an open source programming language.

22


http://manoptjl.org
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