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Manifold-valued image processing



Manifold-valued images and data

New data aquisition modalities = non-Euclidean range of data

- Interferometric synthetic
aperture radar (InSAR)

- Surface normals

- Diffusion tensors in
magnetic resonance
imaging (DT-MRI)

- Electron backscattered
diffraction (EBSD)

- Directional data: wind,

INSAR data of Mt. Vesuvius
ﬂOW, G PS, [Rocca, Prati, Guarnieri 1997]

phase valued data, S'
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aperture radar (InSAR)

- Surface normals

- Diffusion tensors in
magnetic resonance
imaging (DT-MRI)

- Electron backscattered
diffraction (EBSD)

- Directional data: wind,
flow, GPS,...

National elevation dataset
[Gesch, Evans, Mauck, 2009]

directional data, S?



Manifold-valued images and data

New data aquisition modalities = non-Euclidean range of data

- Interferometric synthetic
aperture radar (InSAR)

- Surface normals

- Diffusion tensors in
magnetic resonance
imaging (DT-MRI)

- Electron backscattered
diffraction (EBSD) ,

the Camino data set

o Directional data: Wind, http://cmic.cs.ucl.ac.uk/camino
flow. GPS . sym. pos. def. Matrices, P(3)
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Manifold-valued images and data

New data aquisition modalities = non-Euclidean range of data

- Interferometric synthetic
aperture radar (InSAR)
- Surface normals

- Diffusion tensors in
magnetic resonance
imaging (DT-MRI)

- Electron backscattered

diffraction (EBSD) . .
Slice # 28 from the Camino data set
. Directional data: Wind, http://cmic.cs.ucl.ac.uk/camino
flow. GPS .. sym. pos. def. Matrices, P(3)
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Manifold-valued images and data

New data aquisition modalities = non-Euclidean range of data

- Interferometric synthetic
aperture radar (InSAR)

- Surface normals

- Diffusion tensors in
magnetic resonance
imaging (DT-MRI)

- Electron backscattered
diffraction (EBSD)

- Directional data: wind, 5
flow, GPS,... EBSD example from the MTEX toolbox

[Bachmann, Hielscher, since 2005]

rotations (mod. symmetry), SO(3)/S.



Manifold-valued images and data

New data aquisition modalities = non-Euclidean range of data

- Interferometric synthetic
aperture radar (InSAR)

- Surface normals

- Diffusion tensors in
magnetic resonance
imaging (DT-MRI)

- Electron backscattered
diffraction (EBSD)

- Directional data: wind,
flow, GPS,...

Common properties

- The values lie on a
Riemannian manifold

- tasks from “classical”
image processing

- e.g. Iinpainting



A d-dimensional Riemannian Manifold M

A d-dimensional Riemannian manifold can be informally
defined as a set M covered with a ‘suitable’ collection of
charts, that identify subsets of M with open subsets of R¢ and
a continously varying inner product on the tangential spaces.

[Absil, Mahony, Sepulchre, 2008] 2



A d-dimensional Riemannian Manifold M

Geodesic 4, Shortest connection (on M) between z,y € M
Tangent space T, M at z, with inner product (-, ),
Logarithmic map log, vy = f'yfy(o) “speed towards y”
Exponential map exp, £,= v(1), where v(0) = z, (0) =&,
Parallel transport PT,_,,(v) of v € T, M along Ve



Finite weighted graphs

@’ W12 @ W23

A finite weighted graph G = (V, E, w) consists of

- a finite set of nodes V
- afinite set of directed edges E C V x V
- a (symmetric) weight function w : V x V — R¥,
w(u,v) =0 forv £ .



Euclidean graph framework

Application data on

By

Source: Wikipedia
a nonlocal a surface

a social
neighborhood network graph

is represented by a vertex function f: V. — R™

“Anything can be modeled as a graph”



Variational optimization problems

Goal: A Minimizer of a Variational Model £: H(V; M) - R

the anisotropic energy functional

[Lellmann, Strekalovskiy, Kotters, Cremers, 13; Weinmann, Demaret, Storath, "14; RB, Persch, Steidl, "16]
2 p
E diq(fo(u = > IVF@ ),
uGV (u v)EE

and the isotropic energy functional

[RB, Chan, Hielscher, Persch, Steidl, '16]

)\ 2 1 . P/z
23 Baio): f) + 1 3 (SIVsw ol

ueV ueV “v~u



The graph p-Laplace for manifold-valued data

We recently defined p-Graph-Laplacians: [RB, Tenbrinck, 18]
- anisotropic As: H(V; M) — H(V; TM) by
Abf(u) = div([ VI V) ()
= =) Vw(u,v) di?(f(u), f(v)log gy f(v)

v~u

- isotropic AL: H(V; M) — H(V; TyM) by
ALf(u) = div(|VFIBS, V) (W)
= — bi(w) Y w(u,v)logsy f(v)

U

where
p—2

biw) = VB = (30 wiw o) da(f@w). f() 7.

vNU



The real-valued
graph co—Laplacian




The real-valued co-Laplacian

Let © ¢ R? be a bounded, open set and f: Q — R smooth.

The infinity Laplacian A f in z € Q is defined as
[Crandall, Evans, Gariepy '01]

d d 5
Bocile) = 3 AL L 2L

dxj Oz Oxjxy,

Applications in image interpolation and (stucture) inpainting.
[Caselles, Morel, Sbert '98]



A min-max discretization

Based on a simple approximation by min- and max-values in a
neighborhood [Obermann, ‘os]

Af(z) = ( i i) f<y>—2f<a:>) L o).

yEBr(z) yEBr(z)

a real-valued graph-based variant reads
[Elmoataz, Desquensnes, Lakhdari "14]

IVTF (@)oo = [V f(u)lloo
= %Egymln(m( (v) = f(u)),0)]
— max [max(v/w(u, v)(f(v) = f(w)),0)|

Aco f(u)



Connection to AML extensions

Observation [Aronsson '67; Jensen '93]
Any (unique) viscosity solution f* of the Dirichlet problem

—Axf(z) =0, forzeQ,
flx) = p(x), for x € 092,

is an absolutely minimizing Lipschitz extension (AML) of o, i.e.,
(@) = g(z) forz € 0% = [|[Df*||1o(x) < [|DgllLoe(s),

for every open, bounded subset ¥ Cc Q and every g € C(X)
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Connection to AML extensions

Observation [Aronsson '67; Jensen '93]
Any (unique) viscosity solution f* of the Dirichlet problem

—Axf(z) =0, forzeQ,
flx) = p(x), for x € 092,

is an absolutely minimizing Lipschitz extension (AML) of o, i.e.,
fH(x) = g(z) forz € 0% = [|Df*||reos) < |IDgllee(s),

for every open, bounded subset ¥ Cc Q and every g € C(X)

= minimize locally the discrete Lipschitz constant [obermann, 'os]
min L(f(xzo)) with  L(f(z0)) = max [f(wo) = Flay)l

(o) zi~ao ||mo — x|

= consistent scheme for solving —A f = 0. 9



Constructing discrete Lipschitz extensions

On R the infinity Laplace operator can be approximated by

Ao f(zo) = 1 (f(xo) - f(xj)+f(m0) - f(@))

lwo = w3+ lwo —2F I\ llwo — 23 lzo — 27|l

where the neighbors (z7, z}) are determined by

[Obermann, 'o4]

(mf,x}k) = argmax’ f(z:) — f(=) |
125~ |Zo — x4l + |20 — 4]

10



Constructing discrete Lipschitz extensions

On R the infinity Laplace operator can be approximated by

1 (f(a:o) — @) fwo) - f(xf))

lzo — 23|l + llwo — 27|\ [lzo — 5] lzo — 27|l

Aoof(x()) =

where the neighbors (z7, z}) are determined by

[Obermann, 'o4]
* *

(@t 7) — angme [0 = £(0)) = (F(a;) ~ Fao))

7 T4, ~TQ HlO - xZH + on - .T]H

10



Constructing discrete Lipschitz extensions

On R™ the infinity Laplace operator can be approximated by

Ao f(zo) = 1 (f(xo) - f(xj)+f(m0) - f(@))

lwo = w3+ lwo —2F I\ llwo — 23 lzo — 27|l

where the neighbors (z7, z}) are determined by
[Obermann, 'os; RB, Tenbrinck, "17]

(0t 07) — angme JO@) = F@0) = () ~ @)

7wy lzo = il] + w0 — 24

10



The manifold-valued
graph co—Laplacian




Graph co-Laplacian for manifold-valued data

We define the graph-oco-Laplace operator

for manifold valued data Asf In a vertex u € V as

A f(u) — \% w(U,U—T) logf(u) f(UT) + V w(ua U;) logf(u) f(’l);)
- Voluvf) + /w(u,v3) ’

where v}, v5 € M(u) maximize the discrete Lipschitz constant

in the local tangent space T}(,)M among all neighbors, i.e,,

(v7, )

= argmax
(v1,v2)ENZ(u)

Vol o og g £(0n) = /e v g (02|

1



Numerical iteration scheme

to solve

Axf(u) =0 forallu € U,
flu) = g(u) forallu € V/U.

we introduce an artificial time dimension ¢, i.e.

{(u t) = Asof(u,t) forallu e U, t € (0,0),
f(u,0) = fo(u) forallu € U,
flu,t) = g(u,t) forallu e V/U,t € [0, 00).

12



Numerical iteration scheme Il

Foranyu € V,p e RT U{cc}, A > 0, we aim to solve
!
Algorithm. Forward difference or explicit scheme:

fa1(uw) = expy, (o) (At (Apfulu) — Alogy, ) fo(u)))

I to meet CFL conditions: small At necessary

13



Numerical examples




Interpolation of structure

Goal. . . . .
Inpaint A C V using information in 0A = V/A.

[Elmoataz, Toutain, Tenbrinck "16]

oA

14
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Inpainting of vector-valued data

a lost area (white) a lost area (white)

15



Inpainting of vector-valued data

inpainted componentwise
(M =R per channel)

[Elmoataz, Toutain, Tenbrinck, "16]
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Inpainting of vector-valued data

inpainted componentwise inpainted vector-valued
(M =R per channel) (M =R3)

[Elmoataz, Toutain, Tenbrinck, "16] [RB, Tenbrinck, "18]

15
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Conclusion

- graphs model both local and nonlocal features
- manifold-valued graph co-Laplacian for inpainting

- inpaint structure on manifold-valued data

Future work

- consistency
- other graph based PDEs
- other image processing tasks (segmentation)

- other numerical schemes
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