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Manifold-valued image processing



Manifold-valued images and data

New data aquisition modalities ⇒ non-Euclidean range of data

• Interferometric synthetic
aperture radar (InSAR)

• Surface normals
• Diffusion tensors in
magnetic resonance
imaging (DT-MRI)

• Electron backscattered
diffraction (EBSD)

• Directional data: wind,
flow, GPS,...
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InSAR data of Mt. Vesuvius
[Rocca, Prati, Guarnieri 1997]

phase valued data, S1

Common properties
• The values lie on a
Riemannian manifold

• tasks from “classical”
image processing

• e.g. inpainting
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National elevation dataset
[Gesch, Evans, Mauck, 2009]

directional data, S2

Common properties
• The values lie on a
Riemannian manifold

• tasks from “classical”
image processing

• e.g. inpainting

1



Manifold-valued images and data

New data aquisition modalities ⇒ non-Euclidean range of data

• Interferometric synthetic
aperture radar (InSAR)

• Surface normals
• Diffusion tensors in
magnetic resonance
imaging (DT-MRI)

• Electron backscattered
diffraction (EBSD)

• Directional data: wind,
flow, GPS,...

Slice # 28 from

the Camino data set
http://cmic.cs.ucl.ac.uk/camino
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[Bachmann, Hielscher, since 2005]

rotations (mod. symmetry), SO(3)/S .
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Finite weighted graphs for data
processing



Finite weighted graphs

A finite weighted graph G = (V,E,w) consists of

• a finite set of nodes V

• a finite set of directed edges E ⊂ V × V

• a (symmetric) weight function w : V × V → R+,
w(u, v) = 0 for v ̸∼ u.
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Finite weighted graphs for modeling discrete data

How can we apply graphs for image processing?

Local neighborhood
of a pixel

Nonlocal neighborhood
of a pixel
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Finite weighted graphs for modeling discrete data

How can we apply graphs for polygon mesh processing?

Image courtesy: Gabriel Peyré

Polygon mesh approximation of a 3D surface.
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Finite weighted graphs for modeling discrete data

How can we apply graphs for point cloud processing?

Image courtesy: François Lozes

Colored 3D point cloud data of a scanned chair.
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Finite weighted graphs for modeling discrete data

How can we apply graphs for point cloud processing?

Image courtesy: François Lozes

Graph construction on a 3D point cloud
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Euclidean graph framework

Application data on

a nonlocal
neighborhood

a surface
Source: Wikipedia

a social
network graph

is represented by a vertex function f : V → Rm

“Anything can be modeled as a graph”
4



A manifold-valued graph framework
& The∞-graph Laplace



Notations on a Riemannian manifoldM

γ ⌢
x,yx y

PTx→y(ν)

M

geodesic γ ⌢
x,y

shortest path (on M) connecting x, y ∈ M.

tangential plane TxM at x, TM := ∪x∈MTxM
logarithmic map logx y = γ̇ ⌢

x,y
(0), “velocity towards y”

exponential map expx ξx = γ(1), where γ(0) = x, γ̇(0) = ξx
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The real-valued∞-Laplacian

Let Ω ⊂ Rd be a bounded, open set and f : Ω → R smooth.

The infinity Laplacian ∆∞f in x ∈ Ω is defined as
[Crandall, Evans, Gariepy ’01]

∆∞f(x) =
d∑

j=1

d∑

k=1

∂f

∂xj

∂f

∂xk

∂2f

∂xjxk
(x).

Applications in image interpolation and (stucture) inpainting.
[Caselles, Morel, Sbert ’98]
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A min-max discretization

Based on a simple approximation by min- and max-values in a
neighborhood [Obermann, ’04]

∆∞f(x) =
1
r2

(
min

y∈Br(x)
f(y) + max

y∈Br(x)
f(y)− 2f(x)

)
+ O(r2).

a real-valued graph-based variant reads
[Elmoataz, Desquensnes, Lakhdari ’14]

∆∞f(u) = ||∇+f(u)||∞ − ||∇−f(u)||∞
= max

v∼u
|min(

√
w(u, v)(f(v)− f(u)), 0)|

− max
v∼u

|max(
√

w(u, v)(f(v)− f(u)), 0)|

7



Connection to AML extensions

Observation [Aronsson ’67; Jensen ’93]

Any (unique) viscosity solution f∗ of the Dirichlet problem
⎧
⎨

⎩
−∆∞f(x) = 0, for x ∈ Ω,

f(x) = ϕ(x), for x ∈ ∂Ω,

is an absolutely minimizing Lipschitz extension (AML) of ϕ, i.e.,

f∗(x) = g(x) for x ∈ ∂Σ ⇒ ||Df∗||L∞(Σ) ≤ ||Dg||L∞(Σ),

for every open, bounded subset Σ ⊂ Ω and every g ∈ C(Σ)

⇒ minimize locally the discrete Lipschitz constant [Obermann, ’04]

min
f(x0)

L(f(x0)) with L(f(x0)) = max
xj∼x0

|f(x0)− f(xj)|
|x0 − xj |

⇒ consistent scheme for solving −∆∞f = 0. 8



Constructing discrete Lipschitz extensions

On Rm the infinity Laplace operator can be approximated by

∆∞f(x0) =
1

|x0 − x∗j |+ |x0 − x∗i |

(
f(x0)− f(x∗j )

|x0 − x∗j |
+

f(x0)− f(x∗i )

|x0 − x∗i |

)

where the neighbors (x∗i , x∗j ) are determined by [Obermann, ’04]

(x∗i , x
∗
j ) = argmax

xi,xj∼x0

|

(

f(xi)

− f(x0))

−

(

f(xj)

− f(x0))

|
|x0 − xi|+ |x0 − xj |
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Graph∞-Laplacian for manifold-valued data

We define the graph-∞-Laplace operator
for manifold valued data ∆∞f in a vertex u ∈ V as

∆∞f(u) :=

√
w(u, v∗1 ) logf(u) f(v

∗
1 ) +

√
w(u, v∗2 ) logf(u) f(v

∗
2 )√

w(u, v∗1 ) +
√
w(u, v∗2 )

,

where v∗1 , v
∗
2 ∈ N (u) maximize the discrete Lipschitz constant

in the local tangent space Tf(u)M among all neighbors, i.e.,

(v∗1 , v
∗
2 )

= argmax
(v1,v2)∈N 2(u)

∥∥∥
√

w(u, v1) logf(u) f(v1)−
√
w(u, v2) logf(u) f(v2)

∥∥∥
f(u)
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Numerical iteration scheme

to solve
⎧
⎨

⎩
∆∞f(u) = 0 for all u ∈ U,

f(u) = g(u) for all u ∈ V/U.

we introduce an artificial time dimension t, i.e.
⎧
⎪⎪⎨

⎪⎪⎩

∂f
∂t (u, t) = ∆∞f(u, t) for all u ∈ U, t ∈ (0,∞),

f(u, 0) = f0(u) for all u ∈ U,

f(u, t) = g(u, t) for all u ∈ V/U, t ∈ [0,∞).

and propose an explicit Euler scheme with step size τ > 0
using fk(u) := f(u, kτ) we obtain

fk+1(u) = expfk(u)
(
τ∆∞fk(u)

)
, for all u ∈ V

11



Numerical examples



Interpolation of structure

Goal
Inpaint A ⊂ V using information in ∂A = V/A.

[Elmoataz, Toutain, Tenbrinck ’16]

1. Build a graph using image patches and local neighbors:
→ nonlocal relationships for vertices in border zone
→ local connection for inner nodes in A

2. Solve ∆∞f(u) = 0 for all vertices u ∈ A ⊂ V

3. Add border nodes to ∂A and repeat until A = ∅.
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Inpainting of symmetric positive definite matrices

manifold M = P(2), graph construction from previous slide

Original data

Given (lossy) data
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Inpainting of symmetric positive definite matrices

manifold M = P(2), graph construction from previous slide

Inpainting with
25 neighbors, patch size 6

Given (lossy) data
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Inpainting of symmetric positive definite matrices

manifold M = P(2), graph construction from previous slide

Inpainting with
5 neighbors, patch size 6

Given (lossy) data
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Inpainting of symmetric positive definite matrices

manifold M = P(2), graph construction from previous slide

Original data Given (lossy) data
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Inpainting of directional data

manifold M = S2, graph construction from previous slide.

Original data

Given (lossy) data
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Inpainting of directional data

manifold M = S2, graph construction from previous slide.

Original data Given (lossy) data
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Inpainting of directional data

manifold M = S2, graph construction from previous slide.

Inpainting with
first and second order TV

Given (lossy) data
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Inpainting of directional data

manifold M = S2, graph construction from previous slide.

Inpainted with
graph ∞-Laplace

Given (lossy) data
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Inpainting of directional data

manifold M = S2, graph construction from previous slide.

Original data Given (lossy) data
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Conclusion



Conclusion

• manifold-valued graph ∞-Laplacian for inpainting
• model local and nonlocal features
• inpaint structure on manifold-valued data

Future work

• consistency
• other graph based PDEs
• other image processing tasks (segmentation)
• other numerical schemes
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