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Manifold-valued image processing



Manifold-valued images and data

New data aquisition modalities = non-Euclidean range of data

- Interferometric synthetic
aperture radar (InSAR)

- Surface normals

- Diffusion tensors in
magnetic resonance
imaging (DT-MRI)

- Electron backscattered
diffraction (EBSD)

- Directional data: wind,

INSAR data of Mt. Vesuvius
ﬂOW, G PS, [Rocca, Prati, Guarnieri 1997]

phase valued data, S'
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Manifold-valued images and data

New data aquisition modalities = non-Euclidean range of data

- Interferometric synthetic
aperture radar (InSAR)

- Surface normals
- Diffusion tensors in

magnetic resonance
imaging (DT-MRI)
- Electron backscattered
diffraction (EBSD) ,
the Camino data set

o Directional data: Wind, http://cmic.cs.ucl.ac.uk/camino
flow. GPS . sym. pos. def. Matrices, P(3)
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New data aquisition modalities = non-Euclidean range of data

- Interferometric synthetic
aperture radar (InSAR)

- Surface normals

- Diffusion tensors in
magnetic resonance
imaging (DT-MRI)

- Electron backscattered

diffraction (EBSD) . .
Slice # 28 from the Camino data set
. Directional data: Wind, http://cmic.cs.ucl.ac.uk/camino
flow. GPS .. sym. pos. def. Matrices, P(3)
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Manifold-valued images and data

New data aquisition modalities = non-Euclidean range of data

- Interferometric synthetic
aperture radar (InSAR)

- Surface normals

- Diffusion tensors in
magnetic resonance
imaging (DT-MRI)

- Electron backscattered
diffraction (EBSD)

- Directional data: wind,
flow, GPS,... EBSD example from the MTEX toolbox

[Bachmann, Hielscher, since 2005]

rotations (mod. symmetry), SO(3)/S.



Manifold-valued images and data

New data aquisition modalities = non-Euclidean range of data

- Interferometric synthetic
aperture radar (InSAR)

- Surface normals

- Diffusion tensors in
magnetic resonance
imaging (DT-MRI)

- Electron backscattered
diffraction (EBSD)

- Directional data: wind,
flow, GPS,...

Common properties

- The values lie on a
Riemannian manifold

- tasks from “classical”
image processing

- e.g. inpainting



Finite weighted graphs for data
processing
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A finite weighted graph G = (V, E, w) consists of

- a finite set of nodes V
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Finite weighted graphs
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A finite weighted graph G = (V, E, w) consists of

- a finite set of nodes V
- afinite set of directed edges E C V x V
- a (symmetric) weight function w : V x V — R™,
w(u,v) =0 forv £ .



Finite weighted graphs for modeling discrete data

How can we apply graphs for image processing?

Local neighborhood
of a pixel
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How can we apply graphs for image processing?

Local neighborhood Nonlocal neighborhood
of a pixel of a pixel



Finite weighted graphs for modeling discrete data

How can we apply graphs for polygon mesh processing?

Image courtesy: Gabriel Peyré
Polygon mesh approximation of a 3D surface.



Finite weighted graphs for modeling discrete data

How can we apply graphs for point cloud processing?
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Image courtesy: Frangois Lozes

Colored 3D point cloud data of a scanned chair.



Finite weighted graphs for modeling discrete data

How can we apply graphs for point cloud processing?

Image courtesy: Frangois Lozes

Graph construction on a 3D point cloud



Euclidean graph framework

Application data on

Source: Wikipedia
a nonlocal a surface a social
neighborhood network graph

is represented by a vertex function f: V. — R™

“Anything can be modeled as a graph”



A manifold-valued graph framework
& The co-graph Laplace



Notations on a Riemannian manifold M

z Try y

M

eodesic v~ shortest path (on M) connecting z,y € M.
g x7y
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Notations on a Riemannian manifold M

geodesic 74, Shortest path (on M) connecting =,y € M.
tangential plane T, M at z, TM = Upe /T, M
logarithmic map log, y = ﬁfy(o), “velocity towards 3"
exponential map exp, &, = (1), where v(0) = z, ¥(0) = &,



The real-valued co-Laplacian

Let © ¢ R? be a bounded, open set and f: Q — R smooth.

The infinity Laplacian A f in z € Q is defined as

[Crandall, Evans, Gariepy '01]

d d 5
Bocile) = 3 AL L 2L

dxj Oz Oxjxy,

Applications in image interpolation and (stucture) inpainting.
[Caselles, Morel, Sbert '98]



A min-max discretization

Based on a simple approximation by min- and max-values in a
neighborhood [Obermann, ‘os]

Af(z) = ( i i) f<y>—2f<a:>) L o).

yEBr(z) yEBr(z)

a real-valued graph-based variant reads
[Elmoataz, Desquensnes, Lakhdari "14]

IVTF (@)oo = [V f(u)lloo
= %Egymln(m( (v) = f(u)),0)]
— max [max(v/w(u, v)(f(v) = f(w)),0)|

Aco f(u)



Connection to AML extensions

Observation [Aronsson '67; Jensen '93]
Any (unique) viscosity solution f* of the Dirichlet problem

—Axf(z) =0, forzeQ,
flx) = p(x), for x € 092,

is an absolutely minimizing Lipschitz extension (AML) of o, i.e.,
(@) = g(z) forz € 0% = [|Df*||ro(m) < [|Dgllo(s),

for every open, bounded subset ¥ Cc Q and every g € C(X)

= minimize locally the discrete Lipschitz constant [obermann, ‘os]

' , B |f (o) — f(z)]
min L(f(zo) with  L(f(w)) = max “= 0

= consistent scheme for solving —A f = 0. 8



Constructing discrete Lipschitz extensions

On R™ the infinity Laplace operator can be approximated by

A f(z0) = 1 (f(:zro) — f(z) | flwo) — f(@))

~ w0 tleo— 2} \ w0 ] o — 3]

where the neighbors (z},z}) are determined by  [obermann, ‘ou]

(xf,x;) = argmax ’ f(xl) - f(:E]) ‘
Ti,T 5T |$0 - 331| + |l‘0 - :Ej|
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A f(z0) = 1 (f(:zro) — f(z) | flwo) — f(@))

~ w0 tleo— 2} \ w0 ] o — 3]

where the neighbors (z},z}) are determined by  [obermann, ‘ou]
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Graph co-Laplacian for manifold-valued data

We define the graph-oco-Laplace operator
for manifold valued data A f in a vertexu € V as

Aof(u) = Vw(u,v7)logs) f(v7) + v/w(u, v3)log f(v5)

\/w(u, vy) + \/w(u, v3)

where v}, v5 € N (u) maximize the discrete Lipschitz constant
in the local tangent space T}(,)M among all neighbors, i.e,,

(v7, )

= argmax
(v1,v2)ENZ(u)

Vw(u, v)1og sy f(v1) — vVw(u, v2) log s, f(UZ)Hf(

w)

10



Numerical iteration scheme

to solve
Axf(u) =0 forallu e U,
{ flu) = g(u) forallu e V/U.
we introduce an artificial time dimension ¢, i.e.
9 (u,t) = Aoof(u,t) forallu € U, t € (0, 00),
f(u,0) = fo(u) forallu e U,
fu,t) = g(u,t) forallu e V/U,t € [0, 00).

and propose an explicit Euler scheme with step size 7 > 0
using fx(u) == f(u, kT) we obtain

fer1(u) = expyp ) (TAx fr(u)), forallu eV

1



Numerical examples




Interpolation of structure

Goal
Inpaint A C V using information in 04 = V/A.

[Elmoataz, Toutain, Tenbrinck "16]

dA

12
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Inpainting of directional data

ifold M = S?, graph construction from previous slide.

3
Y
=

riginal data Given (lossy) data

14



(1]
i)
(1]
©
—
(1]
c
S
)
(&}
(V]
—
©
Y
(=}
on
c
=]
=
1]
o
=

Given (lossy) data

Inpainting with
first and second order TV

14



Inpainting of directional data

Inpainted with Given (lossy) data
graph oco-Laplace
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Inpainting of directional data

ifold M = S?, graph construction from previous slide.
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Conclusion

- manifold-valued graph oo-Laplacian for inpainting
- model local and nonlocal features

- inpaint structure on manifold-valued data
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Conclusion

- manifold-valued graph oo-Laplacian for inpainting
- model local and nonlocal features

- inpaint structure on manifold-valued data

Future work

- consistency
- other graph based PDEs
- other image processing tasks (segmentation)

- other numerical schemes

15
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