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Introduction
What do we want to do?
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0

image f ∈ [0,1]N×M

1
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0

disturbed by noise

Here: image f is phase valued, i.e. def. on the circle S1 ∼= [−π, π):
π

0

−π

phase valued image f, fi,j ∈ S1

π

0

−π

disturbed by noise

Goal: reconstruct image f from noisy data, preserve edges.
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Introduction II
[Osher, Rudin, Fatemi, 1992]

tool: minimizing the Rudin-Osher-Fatemi (ROF) functional∑
i,j

(fi,j − xi,j)2 + λ
∑
i,j

|∇xi,j|

∇ discrete gradient∑
i,j|∇xi,j| discrete total variation (TV)

regularization parameter λ > 0

⇒ edge-preserving
stair caising-effect: reduced by adding higher order derivatives

Recently [Cremers,Strekalovski, 2012], [Lellmann et al., 2013], [Weinmann et al., 2013]

TV denoising generalized to Riemannian manifolds
several algorithms to find the minimizer x∗
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Outline

1 Introduction

2 Second Order Differences on S1

3 Higher Order Differences on S1 and Higher Order TV

4 Proximal Mappings & Cyclic Proximal Point Algorithm for TV on S1

5 Application to InSAR Denoising
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First & Second Order Differences on R
A short reminder.

Let w = (wj)
d
j=1 ∈ Rd\{0} be a weight: ⟨w, 1d⟩ :=

d∑
j=1

wj = 0

The finite difference operator is given by

∆(x;w) := ⟨x,w⟩, x ∈ Rd

∆(x;w) is shift invariant.

Examples
b1 := (−1, 1): First order difference ∆(x; b1) = x2 − x1
b2 := (1,−2, 1): Second order difference ∆(x; b2) = x1 − 2x2 + x3
b1,1 := (−1, 1,1,−1): ‘mixed second order difference’

∆(x; b1,1) = −x1 + x2 + x3 − x4

R. Bergmann Second Order Differences on S1 & Variational Denoising 5
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First & Second Order Difference on S1
Defined by looking at different situations on R the points may take.

x2

x3

x1

x′1

−π

π

x1
x3

x2

x′2

−π

π

p1

p2

p3

xi ∈ [− π, π)⇔ pi := (cos xi, sin xi)
Idea: unwrap the circle onto any
tangential line

Absolute cyclic differences w.r.t w:

d(x;w) := min
α∈R

∣∣∆(
[x+ α1d]2π;w

)∣∣
[x]2π: element-wise mod 2π
except xi = (2k+ 1)π: ∆ with ±π
shift invariant

b1: arc length distance d(x;b1) = d1(x1, x2)
b2: d(x; b2) = d2(x1, x2, x3) =

∣∣(∆(x; b2)
)
2π

∣∣ (the same holds for b1,1)
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Second Order Total Variation on the Circle
Transfer the ROF functional to the circle.

Let f = (fi)Ni=1 be given data on S1, α, β ≥ 0.
We are interested in the minimizers x∗ of

J(x) := F(x; f) + αTV1(x) + β TV2(x),

where

data fidelity term F(x; f) = 1
2

N∑
i=1

d1(fi, xi)2

first order differences TV1(x) =
N−1∑
i=1

d1(xi, xi+1)

second order differences TV2(x) =
N−1∑
i=2

d2(xi−1, xi, xi+1)

R. Bergmann Second Order Differences on S1 & Variational Denoising 7
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Proximal Point Algorithm

For a proper, closed, convex function φ : RN → (−∞,+∞] and λ > 0 the
proximal mapping proxλφ : RN → RN is defined by

proxλφ(f) := argmin
x∈RN

1
2
∥f− x∥22 + λφ(x),

trade-off: minimizing φ vs. “staying near” f
λ: weight or trade-off parameter
fixpoints of proxλφ: minima of φ.
often: closed form of proxλφ known.

Proximal Point Algorithm (PPA) [Moreau, 1965; Rockafellar, 1976]

x(k+1) = proxλφ(x(k)), k ∈ N

R. Bergmann Second Order Differences on S1 & Variational Denoising 8
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Cyclic Proximal Point Algorithm
Split into smaller proximal mappings and iterate.

φ =
c∑

i=1

φi, c is called the cycle length,

proximal mappings of summands φi “easier”
⇒ iteratively apply “small” proximal mappings proxλφi

Cyclic Proximal Point Algorithm (CPPA)

x(k+
i+1
c ) = proxλkφi

(x(k+
i
c )), i = 0, . . . , c− 1, k ∈ N.

Lemma (Convergence of the CPPA on R [Bertsekas, 2011])
Let φ have a minimizer x∗ and {λk}k be a sequence, such that∑∞

k=1 λk =∞∑∞
k=1 λ

2
k <∞

Then the CPPA converges to a minimizer.

R. Bergmann Second Order Differences on S1 & Variational Denoising 9



Introduction Second Order Differences TV Proximal Mappings Applications

Proximal Mapping I
for each data fidelity term of data on S1.

data fidelity term φ(x) = d1(f, x)2, f ∈ [−π, π)
proxλd1(f,·)2(g) = argminx

1
2d1(g, x)

2 + λd1(f, x)2

idea again: “near g” vs. minimizing d1(f, x)2

Theorem (B., Laus, Steidl, Weinmann)
The unique minimizer x∗ of proxλd1(f,·)2(g) is

x∗ =

(
g+ λf
1+ λ

+
λ

1+ λ
2π v

)
2π

, v =

{
0 for |g− f| ≤ π,

sgn(g− f) for |g− f| > π

Sketch of proof

first term is the minimizer on R
second term the minimial value, taking g+ 2πk, f+ 2πl into account

R. Bergmann Second Order Differences on S1 & Variational Denoising 10
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Proximal Mapping II
for the finite difference terms on S1.

finite difference term φ(x) = d(x;w),w ∈ {b1, b2, b1,1}
x, g same length as w
proxλd(·;w)(g) = argminx d1(g, x)2 + λd(x;w)

Theorem (B., Laus, Steidl, Weinmann)

Set s := sgn(⟨g,w⟩)2π and m := min
{
λ, |(⟨g,w⟩)2π|

∥w∥2
2

}
.

1 If |(⟨g,w⟩)2π| < π, the unique minimizer is given by

x∗ = (g− smw)2π

2 If |(⟨g,w⟩)2π| = π, the two minimizers are

x∗ = (g∓ smw)2π

Idea of the proof: Minimizing over “possible constellations” on R.
R. Bergmann Second Order Differences on S1 & Variational Denoising 11
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CPPA with Second Order TV for 1D Data on S1
How to split the higher order TV functional J?

F(x; f) = 1
2

N∑
i=1

d1(fi, xi)2=: J1(x)

proximal mapping I (applied element-wise)
first order differences

αTV1(x) = α

N−1∑
i=1

d1(xi, xi+1)

α

⌊
N−1
2

⌋∑
i=1

=: J2(x) + J3(x)

inner sum: distinct data⇒ proximal mapping II with w = b1

second order differences

β TV2(x) = β

N−1∑
i=2

d2(xi−1, xi, xi+1)

⌊
N−1
3

⌋∑
i=1

inner sum: distinct data⇒ proximal mapping II with w = b2
⇒ J(x) =

∑6
l=1 Jl(x), i.e., cycle length c = 6

R. Bergmann Second Order Differences on S1 & Variational Denoising 12
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Algorithm for CPP on S1

Input non-negative parameters λ0 > 0 and α, β
data f ∈ [−π, π)N

CPPA(α, β, λ0, f)
Initialize x(0) ← f, k← 0
Initialize the cycle length c← 6
Repeat

For l from 1 to c
x(k−1+ l

c ) ← proxλkJl (x
(k−1+ l−1

c ))

k← k+ 1
λk ← λ0

k

Until a convergence criterion are reached
Return x(k)

R. Bergmann Second Order Differences on S1 & Variational Denoising 13
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Example
Denoising a 1D phase valued signal.

0 1
4

1
2

3
4

1
−π

−π
2

0

π
2

π

function f : [0, 1]→ S1 sampled to obtain data fo = (fo,i)500i=1
jumps > π at 5

16 and 11
16 are due to the representation system

R. Bergmann Second Order Differences on S1 & Variational Denoising 14
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Example
Denoising a 1D phase valued signal.

0 1
4

1
2

3
4

1
−π

−π
2

0

π
2

π

function f : [0, 1]→ S1 sampled to obtain data fo = (fo,i)500i=1
adding wrapped Gaussian noise, σ = 0.2

5
16

noisy data fn = (f0 + η)2π
R. Bergmann Second Order Differences on S1 & Variational Denoising 14
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Example
Denoising a 1D phase valued signal.

0 1
4

1
2

3
4

1
−π

−π
2

0

π
2

π

comparison of fo & fn with

)500i=1
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Example
Denoising a 1D phase valued signal.

0 1
4

1
2

3
4

1
−π

−π
2

0

π
2

π

comparison of fo & fn with f1

)500i=1

denoising: just TV1: α = 3
4 , β = 0

5
16

but: stair casing
R. Bergmann Second Order Differences on S1 & Variational Denoising 14
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Example
Denoising a 1D phase valued signal.

0 1
4

1
2

3
4

1
−π

−π
2

0

π
2

π

comparison of fo & fn with f2

)500i=1

denoising: just TV2: α = 0, β = 3
2

5
16

but: no plateaus
R. Bergmann Second Order Differences on S1 & Variational Denoising 14
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Example
Denoising a 1D phase valued signal.

0 1
4

1
2

3
4

1
−π

−π
2

0

π
2

π

comparison of fo & fn with f3

)500i=1

denoising: TV1 &TV2: α = 1
2 , β = 1

5
16

smallest mean squared error
R. Bergmann Second Order Differences on S1 & Variational Denoising 14
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CPPA with Second Order TV for 2D data on S1
Splitting the functional J for an N×M pixel image using mainly things we already know.

data f :=
(
fi,j)N,Mi,j=1 ∈ [−π, π)N×M and α = (α1, α2), β = (β1, β2), γ

F(x; f) element-wise distance as before

αTV1(x) := α1

N−1,M∑
i,j=1

d1(xi,j, xi+1,j) + α2

N,M−1∑
i,j=1

d1(xi,j, xi,j+1)

β TVhv
2 (x) := β1

N−1,M∑
i=1,j=2

d2(xi−1,j, xi,j, xi+1,j) + β2

N,M−1∑
i=2,j=1

d2(xi,j−1, xi,j, xi,j+1)

γ TVd
2(x) := γ

N−1,M−1∑
i,j=1

d1,1(xi,j, xi+1,j, xi,j+1, xi+1,j+1)

⇒ minimizing J(x) := F(x; f) + αTV1(x) + β TVhv
2 (x) + γ TVd

2(x)
data term, 2× 2 TV1 terms, 2× 3 TVhv

2 terms, 4 TVd
2 terms⇒ c = 15

R. Bergmann Second Order Differences on S1 & Variational Denoising 15
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Example
Denoising artificial phase valued data.

π

0

−π

original data fo, 256× 256 pixel image
1
4
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Example
Denoising artificial phase valued data.

π

0

−π

π

0

−π

π

0

−π

π

0

−π

noisy data fn, σ = 0.3
1
4
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Example
Denoising artificial phase valued data.

π

0

−π

π

0

−π

π

0

−π

π

0

−π

denoising fn: f1 with just TV1
α1 = 3

8 , α2 = 1
4 , β1 = β2 = γ = 0: stair casing 1

4
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Example
Denoising artificial phase valued data.

π

0

−π

π

0

−π

π

0

−π

π

0

−π

denoising fn: f2 with just TV2
α1 = α2 = 0, β1 = β2 = γ = 1

8 : no plateaus 1
4
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Example
Denoising artificial phase valued data.

π

0

−π

π

0

−π

π

0

−π

π

0

−π

denoising fn: f3 with TV1 & TV2
α1 = 1

4 , α2 = β1 = β2 = 1
8 ,γ = 0: smallest mean squared error 14
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Convergence of CPPA on S1
Comparison to R and challenges.

On R and Hadamard spaces [Bǎcák, 2013]

(e.g. Riemannian manifold, non-pos. curv.,simply connected)
∞∑
k=0

λk =∞ and
∞∑
k=0

λ2
k <∞

⇒ CPPA on R converges (weakly) to a global minimizer
proof uses i.a. convexity of Ji
How to define convexity on S1?

Example
For x0 ∈ S1 take

f : R→ R, f(x) := d1(x0, (x)2π).

Then f is not convex.

R. Bergmann Second Order Differences on S1 & Variational Denoising 17
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Convergence of CPPA on S1
With restriction on data f and λ0.

Theorem (B., Laus, Steidl, Weinmann)
Let x(0) = f. And for an ε > 0

TV1(f) + TVhv
2 (f) + TVd

2(f) ≤ ε2

max{α1,α2,β1,β2,γ}

maxi,j max{d1(fi,j, fi,j+1), d1(fi,j, fi+1,j)} ≤ π
8

ε, λ0 and ∥λ∥22 are “small enough”
Then the CPPA on S1 converges to a minimizer x∗.

Ideas of the proof:

“control”
∑

d1(x(k+
i
c ), f) and from x(k+

i
c )

i,j to its 4-neighborhood
assure, that this still holds after applying the proximal mappings

⇒ all involved Ji have a convex analogue on R
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Denoising of InSAR Data
Measuring earth elevation from radar data.

Synthetic Aperture Radar
emit radar & use motion of antenna (i.e. speed of airplane)
record amplitude and phase of an backscattered signal
amplitude: reflectivity of the surface
phase: both elevation and reflection properties

! phase of one SAR data rather arbitrary
record certain area⇒ SAR image

Interferometry
take two SAR images with different (but known) angles or locations

⇒ phase difference: principal or wrapped phase
encodes elevation, but is noisy

R. Bergmann Second Order Differences on S1 & Variational Denoising 19
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Artificial Example
Illustrating the effect of wrapped phase & noise

2π

π

0

−π

−2π

elevation profile

R. Bergmann Second Order Differences on S1 & Variational Denoising 20



Introduction Second Order Differences TV Proximal Mappings Applications

Artificial Example
Illustrating the effect of wrapped phase & noise

π

0

−π

wrapped phase
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Artificial Example
Illustrating the effect of wrapped phase & noise

π

0

−π

added noise
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Mount Vesuvius
The following image is InSAR data from Mount Vesuvius, Italy.1

1

1
2

0

original data, 432×426 pixel

3
4

1https://earth.esa.int/workshops/ers97/program-details/speeches/rocca-et-al/
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Mount Vesuvius
The following image is InSAR data from Mount Vesuvius, Italy.1

π

0

−π

adapted just the coloring

3
4

1https://earth.esa.int/workshops/ers97/program-details/speeches/rocca-et-al/
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Mount Vesuvius
The following image is InSAR data from Mount Vesuvius, Italy.1

π

0

−π

denoised: α1 = α2 = 1
4 , β1 = β2 = γ = 3

4

1https://earth.esa.int/workshops/ers97/program-details/speeches/rocca-et-al/
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Conclusion

We derived for S1-valued 1D & 2D data f
higher order differences
proximal mappings for first and second order differences
higher order TV functional J
an efficient CPPA to minimize J
convergence
application: InSAR data denoising⇒ goal: unwrapping

Future work
loosen contraints of convergence
further applications of TV (impainting,...)
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