$\DeclareMathOperator{\arccosh}{arccosh} \DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator{\Exp}{Exp} \newcommand{\geo}[2]{\gamma_{\overset{\frown}{#1,#2}}} \newcommand{\geoS}{\gamma} \newcommand{\geoD}[2]{\gamma_} \newcommand{\geoL}[2]{\gamma(#2; #1)} \newcommand{\gradM}{\nabla_{\M}} \newcommand{\gradMComp}[1]{\nabla_{\M,#1}} \newcommand{\Grid}{\mathcal G} \DeclareMathOperator{\Log}{Log} \newcommand{\M}{\mathcal M} \newcommand{\N}{\mathcal N} \newcommand{\mat}[1]{\mathbf{#1}} \DeclareMathOperator{\prox}{prox} \newcommand{\PT}[3]{\mathrm{PT}_{#1\to#2}#3} \newcommand{\R}{\mathbb R} \newcommand{\SPD}[1]{\mathcal{P}(#1)} \DeclareMathOperator{\Tr}{Tr} \newcommand{\tT}{\mathrm{T}} \newcommand{\vect}[1]{\mathbf{#1}}$

# The logarithmic map on the hyperbolic space

The logarithmic map on the sphere $\mathbb H^n$ is defined for any $x,y\in\mathbb S^n$ by

where $\langle\cdot,\cdot\rangle_M$ denotes the Minkowski metric.

### Matlab Documentation

1
2
3
4
5
6
7
8
9
10
11
12
% xi = log(x,y) logarithmic map the point(s) x from y
%
% INPUT
%   x : a point or set of points on the manifold Hn
%   y : a point or set of points on the manifold Hn
%
% OUTPUT
%   xi : resulting point(s) of x(i) to y(i) elementwise
%
% ---
% Manifold-Valued Image Restoration Toolbox 1.1
% R. Bergmann ~ 2015-10-20