$\DeclareMathOperator{\arccosh}{arccosh} \DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator{\Exp}{Exp} \newcommand{\geo}[2]{\gamma_{\overset{\frown}{#1,#2}}} \newcommand{\geoS}{\gamma} \newcommand{\geoD}[2]{\gamma_} \newcommand{\geoL}[2]{\gamma(#2; #1)} \newcommand{\gradM}{\nabla_{\M}} \newcommand{\gradMComp}[1]{\nabla_{\M,#1}} \newcommand{\Grid}{\mathcal G} \DeclareMathOperator{\Log}{Log} \newcommand{\M}{\mathcal M} \newcommand{\N}{\mathcal N} \newcommand{\mat}[1]{\mathbf{#1}} \DeclareMathOperator{\prox}{prox} \newcommand{\PT}[3]{\mathrm{PT}_{#1\to#2}#3} \newcommand{\R}{\mathbb R} \newcommand{\SPD}[1]{\mathcal{P}(#1)} \DeclareMathOperator{\Tr}{Tr} \newcommand{\tT}{\mathrm{T}} \newcommand{\vect}[1]{\mathbf{#1}}$

# The exponential map on the hyperbolic space

The exponential map on the hyperbolic space $\mathbb H^n$ is given for $x\in\mathbb H^n$ and $\xi\in T_x{\mathbb H^n}$ by the formula

where $\langle\cdot,\cdot\rangle_M$ denotes the Minkowski metric.

### Matlab Documentation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
% exp(x,xi) exponential map at the point(s) x towards xi in T_xHn
%
% INPUT
%   x : a point or set of points on the manifold Hn
%  xi : a point or set of point in the tangential spaces TxHn
%
% OPTIONAL
%   t : shorten vectors xi by factor t
%   (given as one value or an array of same length as number of xis)
%
% OUTPUT
%   y : resulting point(s) on Hn
% ---
% Manifold-Valued Image Restoration Toolbox 1.
%  R. Bergmann ~ 2015-01-20 | 2015-10-20