$\DeclareMathOperator{\arccosh}{arccosh} \DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator{\Exp}{Exp} \newcommand{\geo}[2]{\gamma_{\overset{\frown}{#1,#2}}} \newcommand{\geoS}{\gamma} \newcommand{\geoD}[2]{\gamma_} \newcommand{\geoL}[2]{\gamma(#2; #1)} \newcommand{\gradM}{\nabla_{\M}} \newcommand{\gradMComp}[1]{\nabla_{\M,#1}} \newcommand{\Grid}{\mathcal G} \DeclareMathOperator{\Log}{Log} \newcommand{\M}{\mathcal M} \newcommand{\N}{\mathcal N} \newcommand{\mat}[1]{\mathbf{#1}} \DeclareMathOperator{\prox}{prox} \newcommand{\PT}[3]{\mathrm{PT}_{#1\to#2}#3} \newcommand{\R}{\mathbb R} \newcommand{\SPD}[1]{\mathcal{P}(#1)} \DeclareMathOperator{\Tr}{Tr} \newcommand{\tT}{\mathrm{T}} \newcommand{\vect}[1]{\mathbf{#1}}$

# Compute the remainder in $\bigl[-\tfrac{T}{2},\frac{T}{2}\bigr)$

Computes the remainder of a value $x\in\mathbb R$ in $\bigl[-\tfrac{T}{2},\frac{T}{2}\bigr)$, which is mostly used for phase data, i.e. the manifold $S^1$ and $T=2\pi$.

### Matlab Documentation

1
2
3
4
5
6
7
8
9
10
11
12
13
% symMod(v,T) compute the modulus with respect to [-T/2, T/2)
%
%   INPUT
%       v : value(s) of arbitrary data shape
%       T : period T
%
%   OUTPUT
%       p : the congruence class representant w.r.t. [-T/2, T/2)
%
% ---
% Manifold-valued Image Restoration Toolbox 1.0
% R. Bergmann ~ 2014-02-12 | 2014-11-29