You can read any abstract clicking on and access the BibTeX code at . If there is a freely available (preprint) version, it is linked with . The links to the official article page of the corresponding journal page using the Digital Object Identifier. Accompanying code is indicated by a link to the corresponding repository, e. g. , or . Furthermore an external link might be available.


  1. Bergmann, R., Fitschen, J. H., Persch, J., & Steidl, G. (2017). Priors with coupled first and second order differences for manifold-valued image processing.
  2. Bergmann, R., & Merkert, D. (2017). FFT-based homogenization on periodic anisotropic translation invariant spaces.
  3. Bergmann, R., & Merkert, D. (2016). A framework for FFT-based homogenization on anisotropic lattices.

Journal Papers


  1. Bergmann, R., & Tenbrinck, D. (2017). A graph framework for manifold-valued data. SIAM Journal on Imaging Sciences. To appear.
  2. Bergmann, R., Fitschen, J. H., Persch, J., & Steidl, G. (2017). Iterative multiplicative filters for data labeling. International Journal of Computer Vision, 123(3), 435–453.


  1. Bergmann, R., Chan, R. H., Hielscher, R., Persch, J., & Steidl, G. (2016). Restoration of manifold-valued images by half-quadratic minimization. Inverse Problems and Imaging, 10(2), 281–304.
  2. Bergmann, R., & Weinmann, A. (2016). A second order TV-type approach for inpainting and denoising higher dimensional combined cyclic and vector space data. Journal of Mathematical Imaging and Vision, 55(3), 401–427.
  3. Bačák, M., Bergmann, R., Steidl, G., & Weinmann, A. (2016). A second order non-smooth variational model for restoring manifold-valued images. SIAM Journal on Scientific Computing, 38(1), A567–A597.
  4. Bergmann, R., Persch, J., & Steidl, G. (2016). A parallel Douglas–Rachford algorithm for minimizing ROF-like functionals on images with values in symmetric Hadamard manifolds. SIAM Journal on Imaging Sciences, 9(3), 901–937.


  1. Bergmann, R., & Prestin, J. (2015). Multivariate periodic wavelets of de la Vallée Poussin type. Journal of Fourier Analysis and Applications, 21(2), 342–369.


  1. Bergmann, R., Laus, F., Steidl, G., & Weinmann, A. (2014). Second order differences of cyclic data and applications in variational denoising. SIAM Journal on Imaging Sciences, 7(4), 2916–2953.


  1. Bergmann, R. (2013). The fast Fourier transform and fast wavelet transform for patterns on the torus. Applied and Computational Harmonic Analysis, 35(1), 39–51.

Peer-reviewed Conference Proceedings


  1. Bergmann, R., & Merkert, D. (2017). Approximation of periodic PDE solutions with anisotropic translation invariant spaces. In 2017 International Conference on Sampling Theory and Applications (SampTA) (pp. 396–399).
  2. Bergmann, R., Fitschen, J. H., Persch, J., & Steidl, G. (2017). Infimal Convolution Coupling of First and Second Order Differences on Manifold-Valued Images. In F. Lauze, Y. Dong, & A. B. Dahl (Eds.), Scale Space and Variational Methods in Computer Vision: 6th International Conference, SSVM 2017, Kolding, Denmark, June 4-8, 2017, Proceedings (pp. 447–459). Cham: Springer International Publishing.
  3. Bergmann, R., & Tenbrinck, D. (2017). Nonlocal inpainting of manifold-valued data on finite weighted graphs. In F. Nielsen & F. Barbaresco (Eds.), Geometric Science of Information – 3rd Conference on Geometric Science of Information (pp. 604–612). Cham: Springer International Publishing.
  4. Bergmann, R. (2017). MVIRT, A toolbox for manifold-valued image registration. In IEEE International Conference on Image Processing, IEEE ICIP 2017, Beijing, China, September 17–20, 2017.


  1. Bergmann, R., & Weinmann, A. (2015). Inpainting of cyclic data using first and second order differences. In X.-C. Tai, E. Bae, T. F. Chan, S. Y. Leung, & M. Lysaker (Eds.), Energy Minimization Methods in Computer Vision and Pattern Recognition, 10th International Conference on, EMMCVPR 2015, Hong Kong (pp. 155–168). Springer.
  2. Oezguen, N., Schubert, K. J., Bergmann, R., Bennewitz, R., & Strauss, D. J. (2015). Relating tribological stimuli to somatosensory electroencephalographic responses. In Engineering in Medicine and Biology Society (EMBC), 37th Annual International Conference of the IEEE (pp. 8115–8118).


  1. Bergmann, R., & Prestin, J. (2014). Multivariate anisotropic interpolation on the torus. In G. Fasshauer & L. Schumaker (Eds.), Approximation Theory XIV: San Antonio 2013 (pp. 27–44).


  1. Bergmann, R. (2013). Translationsinvariante Räume multivariater anisotroper Funktionen auf dem Torus (Dissertation). Universität zu Lübeck. in german. Similarily: Shaker Verlag, ISBN 978-3844022667, 2013.
  2. Bergmann, R. (2009). Interaktive und automatisierte Hypergraphenvisualisierung mittels NURBS-Kurven (Diploma thesis). Universität zu Lübeck. In german.


  1. Bergmann, R., Laus, F., Persch, J., & Steidl, G. (2017). Manifold-valued Image Processing. Siam News, 50(8), 1&3.