$ \DeclareMathOperator{\arccosh}{arccosh} \DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator{\Exp}{Exp} \newcommand{\geo}[2]{\gamma_{\overset{\frown}{#1,#2}}} \newcommand{\geoS}{\gamma} \newcommand{\geoD}[2]{\gamma_} \newcommand{\geoL}[2]{\gamma(#2; #1)} \newcommand{\gradM}{\nabla_{\M}} \newcommand{\gradMComp}[1]{\nabla_{\M,#1}} \newcommand{\Grid}{\mathcal G} \DeclareMathOperator{\Log}{Log} \newcommand{\M}{\mathcal M} \newcommand{\N}{\mathcal N} \newcommand{\mat}[1]{\mathbf{#1}} \DeclareMathOperator{\prox}{prox} \newcommand{\PT}[3]{\mathrm{PT}_{#1\to#2}#3} \newcommand{\R}{\mathbb R} \newcommand{\SPD}[1]{\mathcal{P}(#1)} \DeclareMathOperator{\Tr}{Tr} \newcommand{\tT}{\mathrm{T}} \newcommand{\vect}[1]{\mathbf{#1}} $

gradient of the distance functions first argument

The gradient of for a fixed value and , with standard . This function returns the gradient

if and the element form the subgradient else. For details see [1].

Matlab Documentation

1
2
3
4
5
6
7
8
% gradDistance(M,x,y,p) gradient of f(x) = 1/p d^p(x,y)for fixed y in M.
%
% INPUT
%  M   : a manfiold
% x,y  : two points on a manifold
%  p   : (2) exponent of the distance function
% ---
% MVIRT | R. Bergmann | 2018-01-22

See also

References

  1. Afsari, B (2011). Riemannian \(L^p\)center of mass: Existence, uniqueness, and convexity. Proceedings of the American Mathematical Society. 139 655–73